Third law of thermodynamics: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added original reference)
(→‎References: Added a recent publication)
 
Line 22: Line 22:
;Related reading
;Related reading
*[http://dx.doi.org/10.1088/0305-4470/22/1/021 P. T. Landsberg "A comment on Nernst's theorem", Journal of Physics A: Mathematical and General '''22''' pp. 139-141 (1989)]
*[http://dx.doi.org/10.1088/0305-4470/22/1/021 P. T. Landsberg "A comment on Nernst's theorem", Journal of Physics A: Mathematical and General '''22''' pp. 139-141 (1989)]
*[http://dx.doi.org/10.1038/ncomms14538 Lluís Masanes and Jonathan Oppenheim "A general derivation and quantification of the third law of thermodynamics", Nature Communications '''8''' 14538 (2017)]
[[category: classical thermodynamics]]
[[category: classical thermodynamics]]
[[category: quantum mechanics]]
[[category: quantum mechanics]]

Latest revision as of 17:28, 14 March 2017

The third law of thermodynamics (or Nernst's theorem after the experimental work of Walther Nernst in 1906 [1]) states that the entropy of a system approaches a minimum (that of its ground state) as one approaches the temperature of absolute zero. One can write

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{T \rightarrow 0} \frac{S(T)}{N} = 0}

where is the number of particles. Note that there are systems whose ground state entropy is not zero, for example metastable states or glasses, or systems with weakly or non-coupled spins that are not subject to an ordering field.

Implications[edit]

The heat capacity (for either pressure or volume) tends to zero as one approaches absolute zero. From

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{p,V}(T)= T \left. \frac{\partial S}{\partial T} \right\vert_{p,V} }

one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(T) - S(0) = \int_0^x \frac{C_{p,V}(T)}{T} ~\mathrm{d}T}

thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C \rightarrow 0} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T \rightarrow 0} , otherwise the integrand would become infinite.

Similarly for the thermal expansion coefficient

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha := \frac{1}{V} \left. \frac{\partial V}{\partial T} \right\vert_p = -\frac{1}{V} \left. \frac{\partial S}{\partial p} \right\vert_T \rightarrow 0}

References[edit]

Related reading