Heat capacity

From SklogWiki
Jump to navigation Jump to search

The heat capacity is defined as the differential of heat with respect to the temperature ,

where is heat and is the entropy.

At constant volume[edit]

From the first law of thermodynamics one has

thus at constant volume, denoted by the subscript , then ,

At constant pressure[edit]

At constant pressure (denoted by the subscript ),

where is the enthalpy. The difference between the heat capacity at constant pressure and the heat capacity at constant volume is given by

Adiabatic index[edit]

Sometimes the ratio of heat capacities is known as the adiabatic index:

Excess heat capacity[edit]

In a classical system the excess heat capacity for a monatomic fluid is given by subtracting the ideal internal energy (which is kinetic in nature)

in other words the excess heat capacity is associated with the component of the internal energy due to the intermolecular potential, and for that reason it is also known as the configurational heat capacity. Given that the excess internal energy for a pair potential is given by (Eq. 2.5.20 in [1]):

where is the intermolecular pair potential and is the radial distribution function, one has

For many-body distribution functions things become more complicated [2].

Rosenfeld-Tarazona expression[edit]

Rosenfeld and Tarazona [3] [4] used fundamental-measure theory to obtain a unified analytical description of classical bulk solids and fluids, one result being:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_v^{ex} \propto T^{-2/5}}

Liquids[edit]

The calculation of the heat capacity in liquids is more difficult than in gasses or solids [5]. Recently an expression for the energy of a liquid has been developed (Eq. 5 of [6]):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = NT \left( 1 + \frac{\alpha T}{2}\right) \left( 3D \left( \frac{\hbar \omega_D}{T} \right) -\left( \frac{\omega_F}{\omega_D} \right)^3 D\left( \frac{\hbar \omega_F}{T}\right) \right)}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_F} is the Frenkel frequency, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_D} is the Debye frequency, is the Debye function, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is the thermal expansion coefficient. The differential of this energy with respect to temperature provides the heat capacity.

Solids[edit]

Petit and Dulong[edit]

[7]

Einstein[edit]

Debye[edit]

A low temperatures on has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_v = \frac{12 \pi^4}{5} n k_B \left( \frac{T}{\Theta_D} \right)^3}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature and is an empirical parameter known as the Debye temperature.

See also[edit]

References[edit]

Related reading