|
This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.
|
Liouville's theorem is an expression of the conservation of volume of phase space:

where
is a distribution function
, p is the generalised momenta and q are the
generalised coordinates.
With time a volume element can change shape, but phase points neither enter nor leave the volume.
References
- J. Liouville "Note sur la Théorie de la Variation des constantes arbitraires", Journal de Mathématiques Pures et Appliquées, Sér. I, 3 pp. 342-349 (1838)