Mean spherical approximation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
Line 30: Line 30:




one can arrive at  (Eq. 11 \cite{JCP_1995_103_02625})
one can arrive at  (Eq. 11 in Ref. 4)




Line 43: Line 43:
#[JSP_1980_22_0661_nolotengoSpringer]
#[JSP_1980_22_0661_nolotengoSpringer]
#[JCP_1995_103_02625]
#[JCP_1995_103_02625]
[[Category:Integral equations]]

Revision as of 12:07, 27 February 2007

The Lebowitz and Percus mean spherical approximation (MSA) (1966) (Ref. 1) closure is given by


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(r) = -\beta \omega(r), ~~~~ r>\sigma.}


The Blum and Hoye mean spherical approximation (MSA) (1978-1980) (Refs 2 and 3) closure is given by


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~~~~~~~~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2}


and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~~~~~~ \sigma_{ij} < r}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{ij}(r)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)} are the total and the direct correlation functions for two spherical molecules of i and j species, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i} is the diameter of 'i species of molecule. Duh and Haymet (Eq. 9 Ref. 4) write the MSA approximation as


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2} comes from the WCA division of the Lennard-Jones potential. By introducing the definition (Eq. 10 Ref. 4)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.s(r)\right. = h(r) -c(r) -\beta \Phi_2 (r)}


one can arrive at (Eq. 11 in Ref. 4)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s}


The Percus Yevick approximation may be recovered from the above equation by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2=0} .

References

  1. [PR_1966_144_000251]
  2. [JSP_1978_19_0317_nolotengoSpringer]
  3. [JSP_1980_22_0661_nolotengoSpringer]
  4. [JCP_1995_103_02625]