Mean spherical approximation

From SklogWiki
Jump to navigation Jump to search

The mean spherical approximation (MSA) closure relation of Lebowitz and Percus is given by [1]:



In the Blum and Høye mean spherical approximation for mixtures the closure is given by [2] [3]:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~ ~ ~ ~ ~ ~ ~ ~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2}


and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~ ~ ~ ~ ~ ~ \sigma_{ij} < r}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{ij}(r)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)} are the total and the direct correlation functions for two spherical molecules of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} species, is the diameter of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} species of molecule. Duh and Haymet (Eq. 9 in [4]) write the MSA approximation as


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2} comes from the Weeks-Chandler-Andersen division of the Lennard-Jones potential. By introducing the definition (Eq. 10 in [4])



one can arrive at (Eq. 11 in [4])


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s}


The Percus Yevick approximation may be recovered from the above equation by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2=0} .

Thermodynamic consistency[edit]

[5]

References[edit]