Mean spherical approximation
The mean spherical approximation (MSA) closure relation of Lebowitz and Percus is given by [1]:
In the Blum and Høye mean spherical approximation for mixtures the closure is given by [2]
[3]:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~ ~ ~ ~ ~ ~ ~ ~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~ ~ ~ ~ ~ ~ \sigma_{ij} < r}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{ij}(r)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)} are the total and the direct correlation functions for two spherical molecules of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} species, is the diameter of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} species of molecule. Duh and Haymet (Eq. 9 in [4]) write the MSA approximation as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2}
comes from the
Weeks-Chandler-Andersen division
of the Lennard-Jones potential.
By introducing the definition (Eq. 10 in [4])
one can arrive at (Eq. 11 in [4])
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s}
The Percus Yevick approximation may be recovered from the above equation by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2=0}
.
Thermodynamic consistency[edit]
References[edit]
- ↑ J. L. Lebowitz and J. K. Percus "Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum Fluids", Physical Review 144 pp. 251-258 (1966)
- ↑ L. Blum and J. S. Høye "Solution of the Ornstein-Zernike equation with Yukawa closure for a mixture", Journal of Statistical Physics, 19 pp. 317-324 (1978)
- ↑ Lesser Blum "Solution of the Ornstein-Zernike equation for a mixture of hard ions and Yukawa closure" Journal of Statistical Physics, 22 pp. 661-672 (1980)
- ↑ 4.0 4.1 4.2 Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)
- ↑ Andrés Santos "Thermodynamic consistency between the energy and virial routes in the mean spherical approximation for soft potentials" Journal of Chemical Physics 126 116101 (2007)