Logarithmic oscillator thermostat: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 28: Line 28:
<ref>[http://dx.doi.org/10.1103/PhysRevLett.110.028902 Michele Campisi, Fei Zhan, Peter Talkner, and Peter Hänggi "Campisi et al. Reply", Physical Review Letters '''110''' 028902 (2013)]</ref>
<ref>[http://dx.doi.org/10.1103/PhysRevLett.110.028902 Michele Campisi, Fei Zhan, Peter Talkner, and Peter Hänggi "Campisi et al. Reply", Physical Review Letters '''110''' 028902 (2013)]</ref>
<ref>[http://dx.doi.org/10.1103/PhysRevE.89.021301 Daniel Sponseller and Estela Blaisten-Barojas "Failure of logarithmic oscillators to serve as a thermostat for small atomic clusters", Physical Review E '''89''' 021301(R) (2014)]</ref>
<ref>[http://dx.doi.org/10.1103/PhysRevE.89.021301 Daniel Sponseller and Estela Blaisten-Barojas "Failure of logarithmic oscillators to serve as a thermostat for small atomic clusters", Physical Review E '''89''' 021301(R) (2014)]</ref>
<ref>[https://dx.doi.org/10.1038%2Fs41598-017-03694-w "Violation of the virial theorem and generalized equipartition theorem for logarithmic oscillators serving as a thermostat", Scientific Reports 7, Article number: 3460]</ref>
==References==
==References==
<references/>
<references/>

Revision as of 12:21, 11 July 2017

The Logarithmic oscillator [1] in one dimension is given by (Eq. 2):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \frac{P^2}{2M}+ T \ln \frac{\vert X \vert}{b}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is the position of the logarithmic oscillator, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} is its linear momentum, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} represents its mass. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the desired temperature of the thermostat, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b > 0} sets a length-scale.

As a thermostat

From the Virial theorem

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\langle X\frac{\partial H}{\partial X} \right\rangle = \left\langle P\frac{\partial H}{\partial P} \right\rangle }

one obtains

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = \left\langle \frac{P^2}{M} \right\rangle } .

This implies that all expectation values of the trajectories correspond to the very same temperature of the thermostat, irrespective of the internal energy. In other words,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial T}{\partial U} = 0}

this implies that the heat capacity becomes

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_V := \left. \frac{\partial U}{\partial T} \right\vert_V = \infty }

Having an infinite heat capacity is an ideal feature for a thermostat.

Practical applicability

[2] [3] [4] [5] [6]

References

Related reading