Carbon dioxide: Difference between revisions
m (→References: Added a new reference.) |
Carl McBride (talk | contribs) m (→References: Added a recent publication) |
||
(24 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{Jmol_general|carbon_dioxide.pdb|Carbon dioxide}} | ||
'''Carbon dioxide''' (CO<sub>2</sub>) | |||
==Models== | |||
====BBV==== | |||
The BBV (Bock, Bich and Vogel) model <ref>[http://dx.doi.org/10.1016/S0301-0104(00)00161-0 S. Bock, E. Bich and E. Vogel "A new intermolecular potential energy surface for carbon dioxide from ab initio calculations", Chemical Physics '''257''' pp. 147-156 (2000)]</ref>. | |||
====EPM==== | |||
The elementary physical model (EPM) and EPM2 of Harris and Yung <ref>[http://dx.doi.org/10.1021/j100031a034 Jonathan G. Harris and Kwong H. Yung "Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model", Journal of Physical Chemistry '''99''' pp. 12021-12024 (1995)]</ref> | |||
consists of [[Lennard-Jones model | 12-6 Lennard-Jones sites]] in conjunction with partial charges centred on each of these sites. | |||
{| | {| style="width:80%; height:100px" border="1" | ||
|- | |- | ||
|< | | Model || <math>r_{\mathrm {OC}}</math> (Å)|| <math>k_{\theta}</math> kJ/mol/rad<sup>2</sup> ||<math>\sigma_{C-C}</math> (Å)|| <math>\epsilon_{C-C}/k_B</math> (K)||<math>\sigma_{O-O}</math> (Å)|| <math>\epsilon_{O-O}/k_B</math> (K)||<math>\sigma_{C-O}</math> (Å)|| <math>\epsilon_{C-O}/k_B</math> (K)|| q(O) (e) || q(C) (e) | ||
< | |- | ||
| EPM || 1.161 || 1275 || 2.785 || 28.999 || 3.064 || 82.997 || 2.921 || 49.060 || -0.33225 || +0.6645 | |||
|- | |||
| EPM2 || 1.149 || 1236 || 2.757 || 28.129 || 3.033 || 80.507 || 2.892 || 47.588 || -0.32560 || +0.6512 | |||
< | |||
| | |||
| < | |||
|- | |||
|} | |} | ||
The bond bending potential is given by | |||
:<math> | |||
\Phi_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2 | |||
</math> | |||
where <math>\theta_0 = 180</math> degrees. | |||
====GCPCDO==== | |||
Gaussian charge polarizable carbon dioxide (GCPCDO) model <ref>[http://dx.doi.org/10.1063/1.3519022 Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics '''134''' 034312 (2011)]</ref>. | |||
====Merker, Engin, Vrabec and Hasse==== | |||
The Merker, Engin, Vrabec and Hasse model | |||
<ref>[http://dx.doi.org/10.1063/1.3434530 Thorsten Merker, Cemal Engin, Jadran Vrabec and Hans Hasse "Molecular model for carbon dioxide optimized to vapor-liquid equilibria", Journal of Chemical Physics '''132''' 234512 (2010)] </ref> | |||
consists of three [[Lennard-Jones model | 12-6 Lennard-Jones sites]] along with a point quadrupole (<math>Q=4.0739</math> DÅ) placed on the carbon site. The model is given by | |||
<math>r_{\mathrm {OC}}</math> = 1.2869 Å, <math>\sigma_{C}=</math> 2.8137 Å <math>\epsilon_{C}/k_B=</math> 12.3724 K and <math>\sigma_{O}=</math> 2.9755 Å, <math>\epsilon_{O}/k_B=</math> 100.493 K. | |||
====Murthy, Singer and McDonald==== | |||
Murthy, Singer and McDonald proposed four models <ref>[http://dx.doi.org/10.1080/00268978100102331 C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics '''44''' pp. 135-143 (1981)]</ref>, two models (A1 and A2) consisting of two [[Lennard-Jones model | 12-6 Lennard-Jones sites]] located roughly on the [[oxygen]] atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the [[9-6 Lennard-Jones potential]], and model C was a three site model using the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]] for the C-O interactions. | |||
====MYVPBMM==== | |||
The Mognetti ''et al.'' model <ref>[http://dx.doi.org/10.1063/1.2837291 B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, and L. G. MacDowell "Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: The case of carbon dioxide", Journal of Chemical Physics '''128''' 104501 (2008)]</ref> | |||
<ref>[http://dx.doi.org/10.1080/00268970902755025 B. M. Mognetti, M. Oettel, P. Virnau, L. Yelash, and K. Binder "Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide", Molecular Physics '''107''' pp. 331-341 (2009)]</ref> | |||
is a [[Coarse graining|coarse–grained]] model having either explicit (point) | |||
quadrupolar interactions or spherically averaged quadrupolar interactions, in conjunction with a single [[Lennard-Jones model | 12-6 Lennard-Jones site]]. | |||
====Oakley and Wheatley==== | |||
The Oakley and Wheatley (OW) model <ref>[http://dx.doi.org/10.1063/1.3059008 Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics '''130''' 034110 (2009)]</ref>. | |||
====SAPT-s==== | |||
SAPT (symmetry-adapted perturbation theory) <ref>[http://dx.doi.org/10.1063/1.479108 Robert Bukowski, Joanna Sadlej, Bogumil Jeziorski, Piotr Jankowski, Krzysztof Szalewicz, Stanislaw A. Kucharski, Hayes L. Williams, and Betsy M. Rice "Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory", Journal of Chemical Physics '''110''' pp. 3785- (1999)]</ref>. | |||
====SYM==== | |||
The SYM model <ref>[http://dx.doi.org/10.1021/jp204563n Kuang Yu, Jesse G. McDaniel, and J. R. Schmidt "Physically Motivated, Robust, ab Initio Force Fields for CO2 and N2", Journal of Physical Chemistry B '''115''' pp. 10054-10063 (2011)]</ref><ref>[http://dx.doi.org/10.1063/1.3672810 Kuang Yu and J. R. Schmidt "Many-body effects are essential in a physically motivated CO2 force field", Journal of Chemical Physics '''136''' 034503 (2012)]</ref>. | |||
====TraPPE==== | |||
Parameters for CO<sub>2</sub> for use in the [[TraPPE force field]] are C having <math>\epsilon/k_B= 27.0</math>K and <math>\sigma = 2.80</math>Å with a partial charge of 0.70 e, and O having <math>\epsilon/k_B= 79.0</math>K and <math>\sigma = 3.05</math>Å with a partial charge of -0.35 e <ref>[http://dx.doi.org/10.1002/aic.690470719 Jeffrey J. Potoff and J. Ilja Siepmann "Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen", AIChE Journal '''47''' pp. 1676-1682 (2001)]</ref>. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.16 Å. Unlike interactions use the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]]. | |||
====Zhang and Duan==== | |||
Parameters for CO<sub>2</sub> for the Zhang and Duan model | |||
<ref>[http://dx.doi.org/10.1063/1.1924700 Zhigang Zhang and Zhenhao Duan "An optimized molecular potential for carbon dioxide", Journal of Chemical Physics '''122''' 214507 (2005)]</ref> | |||
<ref>[http://dx.doi.org/10.1063/1.2965899 Thorsten Merker, Jadran Vrabec, and Hans Hasse "Comment on “An optimized potential for carbon dioxide”", Journal of Chemical Physics '''129''' 087101 (2008)]</ref> | |||
<ref>[http://dx.doi.org/10.1063/1.2965900 Zhigang Zhang and Zhenhao Duan "Response to "Comment on 'An optimized potential for carbon dioxide' "", Journal of Chemical Physics '''129''' 087102 (2008)]</ref> | |||
are C having <math>\epsilon/k_B= 28.845</math>K and <math>\sigma = 2.7918</math>Å with a partial charge of 0.5888 e, and O having <math>\epsilon/k_B= 82.656</math>K and <math>\sigma = 3.00</math>Å with a partial charge of -0.2944 e. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.163 Å. Unlike interactions use the [[Combining rules#Lorentz-Berthelot rules| Lorentz-Berthelot combining rules]]. | |||
==Phase diagram== | |||
<ref>[http://www.jce.divched.org/Journal/Issues/2002/Jul/abs874.html L. Glasser "Equations of state and phase diagrams", Journal of Chemical Education '''79''' 874 (2002)]</ref> | |||
<ref>[http://jchemed.chem.wisc.edu/journal/issues/2009/May/abs566.html A. Herráez, R. M. Hanson, and L. Glasser "Interactive 3D phase diagrams using Jmol" Journal of Chemical Education '''86''': 566 (2009)] and [http://biomodel.uah.es/Jmol/plots/phase-diagrams/ website]</ref> | |||
<ref>[http://dx.doi.org/10.1063/1.4792443 G. Pérez-Sánchez, D. González-Salgado, M. M. Piñeiro, and C. Vega "Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole", Journal of Chemical Physics '''138''' 084506 (2013)]</ref> | |||
==Transport properties== | |||
<ref>[http://dx.doi.org/10.1063/1.4896538 C. G. Aimoli, E. J. Maginn and C. R. A. Abreu "Transport properties of carbon dioxide and methane from molecular dynamics simulations", Journal of Chemical Physics '''141''' 134101 (2014)]</ref> | |||
<ref>[http://dx.doi.org/10.1063/1.4896965 Thuat T. Trinh, Thijs J. H. Vlugt and Signe Kjelstrup "Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields", Journal of Chemical Physics '''141''' 134504 (2014)]</ref> | |||
==References== | ==References== | ||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1063/1.1680756 Trevor G. Gibbons and Michael L. Klein "Thermodynamic properties for a simple model of solid carbon dioxide: Monte Carlo, cell model, and quasiharmonic calculations", Journal of Chemical Physics '''60''' pp. 112-126 (1974)] | |||
*[http://dx.doi.org/10.1080/00268979100100341 R. Eggenberger, S. Gerber, and H. Huber "The carbon dioxide dimer", Molecular Physics '''72''' pp. 433-439 (1991)] | |||
*[http://dx.doi.org/10.1063/1.4974995 Robert Hellmann "Nonadditive three-body potential and third to eighth virial coefficients of carbon dioxide", Journal of Chemical Physics '''146''' 054302 (2016)] | |||
==External resources== | |||
*[http://biomodel.uah.es/Jmol/plots/phase-diagrams/ 3D phase diagram of carbon dioxide] | |||
[[category: models]] | [[category: models]] | ||
[[category:phase diagrams]] | |||
[[category: Contains Jmol]] | |||
{{Numeric}} |
Latest revision as of 10:55, 13 February 2017
<jmol> <jmolApplet> <script>set spin X 10; spin on</script> <size>200</size> <color>lightgrey</color> <wikiPageContents>carbon_dioxide.pdb</wikiPageContents> </jmolApplet></jmol> |
Carbon dioxide (CO2)
Models[edit]
BBV[edit]
The BBV (Bock, Bich and Vogel) model [1].
EPM[edit]
The elementary physical model (EPM) and EPM2 of Harris and Yung [2] consists of 12-6 Lennard-Jones sites in conjunction with partial charges centred on each of these sites.
Model | (Å) | kJ/mol/rad2 | (Å) | (K) | (Å) | (K) | (Å) | (K) | q(O) (e) | q(C) (e) |
EPM | 1.161 | 1275 | 2.785 | 28.999 | 3.064 | 82.997 | 2.921 | 49.060 | -0.33225 | +0.6645 |
EPM2 | 1.149 | 1236 | 2.757 | 28.129 | 3.033 | 80.507 | 2.892 | 47.588 | -0.32560 | +0.6512 |
The bond bending potential is given by
where degrees.
GCPCDO[edit]
Gaussian charge polarizable carbon dioxide (GCPCDO) model [3].
Merker, Engin, Vrabec and Hasse[edit]
The Merker, Engin, Vrabec and Hasse model [4] consists of three 12-6 Lennard-Jones sites along with a point quadrupole ( DÅ) placed on the carbon site. The model is given by = 1.2869 Å, 2.8137 Å 12.3724 K and 2.9755 Å, 100.493 K.
Murthy, Singer and McDonald[edit]
Murthy, Singer and McDonald proposed four models [5], two models (A1 and A2) consisting of two 12-6 Lennard-Jones sites located roughly on the oxygen atoms, plus a point quadrupole located at the molecular centre of mass. Model B differed from models A1 and A2 in the use of the 9-6 Lennard-Jones potential, and model C was a three site model using the Lorentz-Berthelot combining rules for the C-O interactions.
MYVPBMM[edit]
The Mognetti et al. model [6] [7] is a coarse–grained model having either explicit (point) quadrupolar interactions or spherically averaged quadrupolar interactions, in conjunction with a single 12-6 Lennard-Jones site.
Oakley and Wheatley[edit]
The Oakley and Wheatley (OW) model [8].
SAPT-s[edit]
SAPT (symmetry-adapted perturbation theory) [9].
SYM[edit]
TraPPE[edit]
Parameters for CO2 for use in the TraPPE force field are C having K and Å with a partial charge of 0.70 e, and O having K and Å with a partial charge of -0.35 e [12]. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.16 Å. Unlike interactions use the Lorentz-Berthelot combining rules.
Zhang and Duan[edit]
Parameters for CO2 for the Zhang and Duan model [13] [14] [15] are C having K and Å with a partial charge of 0.5888 e, and O having K and Å with a partial charge of -0.2944 e. The molecular geometry is rigid, linear, with a C-C bond length set at the experimental value of 1.163 Å. Unlike interactions use the Lorentz-Berthelot combining rules.
Phase diagram[edit]
Transport properties[edit]
References[edit]
- ↑ S. Bock, E. Bich and E. Vogel "A new intermolecular potential energy surface for carbon dioxide from ab initio calculations", Chemical Physics 257 pp. 147-156 (2000)
- ↑ Jonathan G. Harris and Kwong H. Yung "Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model", Journal of Physical Chemistry 99 pp. 12021-12024 (1995)
- ↑ Rasmus A. X. Persson "Gaussian charge polarizable interaction potential for carbon dioxide", Journal of Chemical Physics 134 034312 (2011)
- ↑ Thorsten Merker, Cemal Engin, Jadran Vrabec and Hans Hasse "Molecular model for carbon dioxide optimized to vapor-liquid equilibria", Journal of Chemical Physics 132 234512 (2010)
- ↑ C. S. Murthy, K. Singer, and I. R. McDonald "Interaction site models for carbon dioxide", Molecular Physics 44 pp. 135-143 (1981)
- ↑ B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, and L. G. MacDowell "Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: The case of carbon dioxide", Journal of Chemical Physics 128 104501 (2008)
- ↑ B. M. Mognetti, M. Oettel, P. Virnau, L. Yelash, and K. Binder "Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide", Molecular Physics 107 pp. 331-341 (2009)
- ↑ Mark T. Oakley and Richard J. Wheatley "Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles", Journal of Chemical Physics 130 034110 (2009)
- ↑ Robert Bukowski, Joanna Sadlej, Bogumil Jeziorski, Piotr Jankowski, Krzysztof Szalewicz, Stanislaw A. Kucharski, Hayes L. Williams, and Betsy M. Rice "Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory", Journal of Chemical Physics 110 pp. 3785- (1999)
- ↑ Kuang Yu, Jesse G. McDaniel, and J. R. Schmidt "Physically Motivated, Robust, ab Initio Force Fields for CO2 and N2", Journal of Physical Chemistry B 115 pp. 10054-10063 (2011)
- ↑ Kuang Yu and J. R. Schmidt "Many-body effects are essential in a physically motivated CO2 force field", Journal of Chemical Physics 136 034503 (2012)
- ↑ Jeffrey J. Potoff and J. Ilja Siepmann "Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen", AIChE Journal 47 pp. 1676-1682 (2001)
- ↑ Zhigang Zhang and Zhenhao Duan "An optimized molecular potential for carbon dioxide", Journal of Chemical Physics 122 214507 (2005)
- ↑ Thorsten Merker, Jadran Vrabec, and Hans Hasse "Comment on “An optimized potential for carbon dioxide”", Journal of Chemical Physics 129 087101 (2008)
- ↑ Zhigang Zhang and Zhenhao Duan "Response to "Comment on 'An optimized potential for carbon dioxide' "", Journal of Chemical Physics 129 087102 (2008)
- ↑ L. Glasser "Equations of state and phase diagrams", Journal of Chemical Education 79 874 (2002)
- ↑ A. Herráez, R. M. Hanson, and L. Glasser "Interactive 3D phase diagrams using Jmol" Journal of Chemical Education 86: 566 (2009) and website
- ↑ G. Pérez-Sánchez, D. González-Salgado, M. M. Piñeiro, and C. Vega "Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole", Journal of Chemical Physics 138 084506 (2013)
- ↑ C. G. Aimoli, E. J. Maginn and C. R. A. Abreu "Transport properties of carbon dioxide and methane from molecular dynamics simulations", Journal of Chemical Physics 141 134101 (2014)
- ↑ Thuat T. Trinh, Thijs J. H. Vlugt and Signe Kjelstrup "Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields", Journal of Chemical Physics 141 134504 (2014)
Related reading
- Trevor G. Gibbons and Michael L. Klein "Thermodynamic properties for a simple model of solid carbon dioxide: Monte Carlo, cell model, and quasiharmonic calculations", Journal of Chemical Physics 60 pp. 112-126 (1974)
- R. Eggenberger, S. Gerber, and H. Huber "The carbon dioxide dimer", Molecular Physics 72 pp. 433-439 (1991)
- Robert Hellmann "Nonadditive three-body potential and third to eighth virial coefficients of carbon dioxide", Journal of Chemical Physics 146 054302 (2016)