Clausius equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Changed comment to be a reference.)
(Corrected T_c to be T_c^3 not T_c^2)
 
Line 7: Line 7:
At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to <ref>For details see the [[Mathematica]] [http://urey.uoregon.edu/~pchemlab/CH417/Lect2009/Clausius%20equation%20of%20state%20to%20evaluate%20a%20b%20c.pdf printout] produced by [http://www.uoregon.edu/~chem/hardwick.html Dr. John L. Hardwick].</ref>
At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to <ref>For details see the [[Mathematica]] [http://urey.uoregon.edu/~pchemlab/CH417/Lect2009/Clausius%20equation%20of%20state%20to%20evaluate%20a%20b%20c.pdf printout] produced by [http://www.uoregon.edu/~chem/hardwick.html Dr. John L. Hardwick].</ref>


:<math>a =  \frac{27R^2T_c^2}{64P_c}</math>
:<math>a =  \frac{27R^2T_c^3}{64P_c}</math>


:<math>b= v_c - \frac{RT_c}{4P_c}</math>
:<math>b= v_c - \frac{RT_c}{4P_c}</math>

Latest revision as of 08:52, 7 September 2012

The Clausius equation of state, proposed in 1880 by Rudolf Julius Emanuel Clausius [1] [2] is given by (Eq. 1 [3])

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ p + \frac{a}{T(v+c)^2}\right] (v-b) =RT.}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v } is the volume per mol, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} is the molar gas constant. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c} is the critical temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_c} is the pressure at the critical point, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_c } is the critical volume per mol.

At the critical point one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 } , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 } , which leads to [4]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = \frac{27R^2T_c^3}{64P_c}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= v_c - \frac{RT_c}{4P_c}}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c= \frac{3RT_c}{8P_c}-v_c}

References[edit]