Clausius equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
(Corrected T_c to be T_c^3 not T_c^2)
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
The '''Clausius equation of state''' is given by
The '''Clausius''' [[Equations of state | equation of state]], proposed in 1880 by [[Rudolf Julius Emanuel Clausius]] <ref>[http://dx.doi.org/10.1002/andp.18802450302 R. Clausius "&Uuml;ber das Verhalten der Kohlens&auml;ure in Bezug auf Druck, Volumen und Temperatur", Annalen der Physik und Chemie '''9''' pp. 337-357 (1880)]</ref> <ref>[http://dx.doi.org/10.1002/andp.18812501007 R. Clausius "Ueber die theoretische Bestimmung des Dampfdruckes und der Volumina des Dampfes und der Flüssigkeit",  Annalen der Physik und Chemie '''14''' pp. 279-290 (1881)]</ref> is given by (Eq. 1 <ref>[http://gallica.bnf.fr/ark:/12148/bpt6k30574.pleinepage.f941.N4 E. Sarrau "Sur la compressibilité des fluides", Comptes Rendus des Séances de l'Académie des Sciences. Paris '''101''' pp. 941-944 (1885)]</ref>)


:<math>\left[ p + \frac{a}{T(v+c)^2}\right] (v-b) =RT</math>
:<math>\left[ p + \frac{a}{T(v+c)^2}\right] (v-b) =RT.</math>


where
where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]], <math> v </math> is the volume per mol,  and <math>R</math> is the [[molar gas constant]]. <math>T_c</math> is the [[critical points | critical]] temperature and <math>P_c</math> is the [[pressure]] at the critical point, and <math> v_c </math> is the critical volume per mol.


:<math>a = v_c - \frac{RT_c}{4P_c}</math>
At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to <ref>For details see the [[Mathematica]] [http://urey.uoregon.edu/~pchemlab/CH417/Lect2009/Clausius%20equation%20of%20state%20to%20evaluate%20a%20b%20c.pdf printout] produced by [http://www.uoregon.edu/~chem/hardwick.html Dr. John L. Hardwick].</ref>


:<math>b= \frac{3RT_c}{8P_c}-v_c</math>
:<math>a =  \frac{27R^2T_c^3}{64P_c}</math>
 
:<math>b= v_c - \frac{RT_c}{4P_c}</math>


and
and


:<math>c= \frac{27R^2T_c^2}{64P_c}</math>
:<math>c= \frac{3RT_c}{8P_c}-v_c</math>  
 
where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]] and <math>R</math> is the [[molar gas constant]]. <math>T_c</math> is the [[critical points | critical]] temperature and <math>P_c</math> is the [[pressure]] at the critical point.
==References==
==References==
#[http://dx.doi.org/10.1002/andp.18802450302 R. Clausius "Ueber das Verhalten der Kohlensäure in Bezug auf Druck, Volumen und Temperatur", Annalen der Physik und Chemie '''9''' pp. 337-357 (1880)]
<references/>
[[category: equations of state]]
[[category: equations of state]]

Latest revision as of 08:52, 7 September 2012

The Clausius equation of state, proposed in 1880 by Rudolf Julius Emanuel Clausius [1] [2] is given by (Eq. 1 [3])

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ p + \frac{a}{T(v+c)^2}\right] (v-b) =RT.}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v } is the volume per mol, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} is the molar gas constant. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c} is the critical temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_c} is the pressure at the critical point, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_c } is the critical volume per mol.

At the critical point one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 } , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 } , which leads to [4]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = \frac{27R^2T_c^3}{64P_c}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= v_c - \frac{RT_c}{4P_c}}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c= \frac{3RT_c}{8P_c}-v_c}

References[edit]