Bridgman thermodynamic formulas: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Carl McBride (talk | contribs) mNo edit summary | Carl McBride (talk | contribs)  m (→References:   Added a related paper by Cooper and  Russell) | ||
| (12 intermediate revisions by the same user not shown) | |||
| Line 16: | Line 16: | ||
| ====pressure==== | ====pressure==== | ||
| :<math>  \left. \partial T \right\vert_p  =  - \left. \partial p \right\vert_T = 1 </math> | :<math>  \left. \partial T \right\vert_p  =  - \left. \partial p \right\vert_T = 1 </math> | ||
| :<math> \left. \partial V \right\vert_p  =  - \left. \partial p \right\vert_V =  \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
| :<math>  \left. \partial S \right\vert_p  =  - \left. \partial p \right\vert_S = C_p/T </math> | |||
| :<math>  \left. \partial Q \right\vert_p  =  - \left. \partial p \right\vert_Q = C_p </math> | |||
| :<math> \left. \partial W \right\vert_p  =  - \left. \partial p \right\vert_W =  p\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
| :<math> \left. \partial U \right\vert_p  =  - \left. \partial p \right\vert_U = C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
| :<math>  \left. \partial H \right\vert_p  =  - \left. \partial p \right\vert_H = C_p </math> | |||
| :<math>  \left. \partial G \right\vert_p  =  - \left. \partial p \right\vert_G = -S </math> | |||
| :<math> \left. \partial A \right\vert_p  =  - \left. \partial p \right\vert_A = -\left( S + p\left. \frac{\partial V}{\partial T} \right\vert_p \right)</math> | |||
| ====temperature==== | |||
| :<math> \left. \partial V \right\vert_T  =  - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
| :<math> \left. \partial S \right\vert_T  =  - \left. \partial T \right\vert_S =  \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
| :<math> \left. \partial Q \right\vert_T  =  - \left. \partial T \right\vert_Q =  T\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
| :<math> \left. \partial W \right\vert_T  =  - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
| :<math> \left. \partial U \right\vert_T  =  - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
| :<math> \left. \partial H \right\vert_T  =  - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p  </math> | |||
| :<math> \left. \partial G \right\vert_T  =  - \left. \partial T \right\vert_G = -V </math> | |||
| :<math> \left. \partial A \right\vert_T  =  - \left. \partial T \right\vert_A =  p\left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
| ====volume==== | |||
| :<math> \left. \partial S \right\vert_V  =  - \left. \partial V \right\vert_S = 1/T  \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p   \right)</math> | |||
| :<math> \left. \partial Q \right\vert_V  =  - \left. \partial V \right\vert_Q =  C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  </math> | |||
| :<math> \left. \partial W \right\vert_V  =  - \left. \partial V \right\vert_W = 0 </math> | |||
| :<math> \left. \partial U \right\vert_V  =  - \left. \partial V \right\vert_U =  C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  </math> | |||
| :<math> \left. \partial H \right\vert_V  =  - \left. \partial V \right\vert_H =  C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p   - V\left.  \frac{\partial V}{\partial T} \right\vert_p </math> | |||
| :<math> \left. \partial G \right\vert_V  =  - \left. \partial V \right\vert_G =  - \left(  V \left. \frac{\partial V}{\partial T} \right\vert_p + S\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math> | |||
| :<math> \left. \partial A \right\vert_V  =  - \left. \partial V \right\vert_A =  -S\left. \frac{\partial V}{\partial p} \right\vert_T  </math> | |||
| ====entropy==== | |||
| :<math> \left. \partial Q \right\vert_S  =  - \left. \partial S \right\vert_Q = 0 </math> | |||
| :<math> \left. \partial W \right\vert_S  =  - \left. \partial S \right\vert_W =   -(p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)   </math> | |||
| :<math> \left. \partial U \right\vert_S  =  - \left. \partial S \right\vert_U =   (p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)   </math> | |||
| :<math> \left. \partial H \right\vert_S  =  - \left. \partial S \right\vert_H = -VC_p/T </math> | |||
| :<math> \left. \partial G \right\vert_S  =  - \left. \partial S \right\vert_G =   -(1/T) \left( VC_p -ST\left. \frac{\partial V}{\partial T} \right\vert_p   \right)   </math> | |||
| :<math> \left. \partial A \right\vert_S  =  - \left. \partial S \right\vert_A =   (1/T) \left( p\left( C_p \left. \frac{\partial V}{\partial p} \right\vert_T +   T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) +  ST\left. \frac{\partial V}{\partial T} \right\vert_p  \right)   </math> | |||
| ====heat==== | |||
| :<math> \left. \partial W \right\vert_Q  =  - \left. \partial Q \right\vert_W =   -p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)   </math> | |||
| :<math> \left. \partial U \right\vert_Q  =  - \left. \partial Q \right\vert_U =   p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)   </math> | |||
| :<math> \left. \partial H \right\vert_Q  =  - \left. \partial Q \right\vert_H =  -VC_p </math> | |||
| :<math> \left. \partial G \right\vert_Q  =  - \left. \partial Q \right\vert_G =   - \left( ST \left. \frac{\partial V}{\partial T} \right\vert_p -VC_p  \right)   </math> | |||
| :<math> \left. \partial A \right\vert_Q  =  - \left. \partial Q \right\vert_A =   p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)   +  ST \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
| ====work==== | |||
| :<math> \left. \partial U \right\vert_W  =  - \left. \partial W \right\vert_U =   p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math> | |||
| :<math> \left. \partial H \right\vert_W  =  - \left. \partial W \right\vert_H =   p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  - V \left. \frac{\partial V}{\partial T} \right\vert_p \right) </math> | |||
| :<math> \left. \partial G \right\vert_W  =  - \left. \partial W \right\vert_G =   -p \left( V\left. \frac{\partial V}{\partial p} \right\vert_T   + S \left. \frac{\partial V}{\partial p} \right\vert_T \right) </math> | |||
| :<math> \left. \partial A \right\vert_W  =  - \left. \partial W \right\vert_A =   -pS \left. \frac{\partial V}{\partial p} \right\vert_T  </math> | |||
| ====internal energy==== | |||
| :<math> \left. \partial H \right\vert_U  =  - \left. \partial U \right\vert_H =   -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  -  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math> | |||
| :<math> \left. \partial G \right\vert_U  =  - \left. \partial U \right\vert_G =   -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p +  p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math> | |||
| :<math> \left. \partial A \right\vert_U  =  - \left. \partial U \right\vert_A =   p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
| ====enthalpy==== | |||
| :<math> \left. \partial G \right\vert_H  =  - \left. \partial H \right\vert_G =   -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p  </math> | |||
| :<math> \left. \partial A \right\vert_H  =  - \left. \partial H \right\vert_A = -\left(S+p  \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T  \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T  </math> | |||
| ====Gibbs energy function==== | |||
| :<math> \left. \partial A \right\vert_G  =  - \left. \partial G \right\vert_A = -S\left(V+p  \left. \frac{\partial V}{\partial p} \right\vert_T \right)  - pV \left. \frac{\partial V}{\partial T} \right\vert_p  </math> | |||
| ==See also== | ==See also== | ||
| *[[Thermodynamic relations]] | *[[Thermodynamic relations]] | ||
| Line 21: | Line 126: | ||
| ==References== | ==References== | ||
| <references/> | <references/> | ||
| ;Related reading | |||
| *[http://arxiv.org/abs/1102.1540 James B. Cooper and T. Russell "On the Mathematics of Thermodynamics", arXiv:1102.1540v1  Tue, 8 Feb (2011)] | |||
| *[http://arxiv.org/abs/1108.4760 James B. Cooper "Thermodynamical identities - a systematic approach", arXiv:1108.4760v1 Wed, 24 Aug (2011)] | |||
| [[Category: Classical thermodynamics]] | [[Category: Classical thermodynamics]] | ||
Latest revision as of 11:02, 13 October 2011
Notation used (from Table I):
- is the pressure.
- is the temperature (in Kelvin).
- is the volume.
- is the entropy.
- is the heat.
- is the work.
- is the internal energy.
- is the enthalpy
- is the Gibbs energy function
- is the Helmholtz energy function.
Bridgman thermodynamic formulas [1]
Table II[edit]
pressure[edit]
temperature[edit]
volume[edit]
entropy[edit]
heat[edit]
work[edit]
internal energy[edit]
enthalpy[edit]
Gibbs energy function[edit]
See also[edit]
References[edit]
- Related reading