WC1 and WC2 hard sphere equations of state
The WC1 and WC2 hard sphere equations of state are given by [1] (Eq. 6):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{WC1} = 1 + \sum_{n=2}^{10} B_n (\rho/\rho_0)^{n-1} + (\rho/\rho_0)^{10} \left[\frac{B_{10}}{1-\rho/\rho_0} - \frac{0.68219}{(1-\rho/\rho_0)^2} \right]}
and WC2 (slightly more accurate) (Eq. 7)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{WC2} = 1 + \sum_{n=2}^{m} B_n (\rho/\rho_0)^{n-1} + (\rho/\rho_0)^{m} \left[\frac{B_{m}}{1-\rho/\rho_0} - \frac{A_2(\rho)}{(1-\rho/\rho_0)^2} \right]}
where (Eq. 8)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_2(\rho) = \frac{\exp(B_{m+1}-B_m) -(\rho/\rho_0)(B_{m}-B_{m-1}) }{\rho/\rho_0 - \exp(1)}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} are the hard sphere virial coefficients and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is the density where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0 = \sqrt{2}/\sigma^3} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the hard sphere diameter.
References[edit]
Related reading