Santos-Lopez de Haro-Yuste hard disk equation of state
The Santos-Lopez de Haro-Yuste equation of state for hard disks (2-dimensional hard spheres) is given by (Eq. 2 Ref. 1, Eq. 5 Ref. 2, Eq. 1 Ref. 3):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{p}{\rho k_B T} = \left[ 1- b_2 \eta - \frac{(1-b_2 \eta_{\mathrm{max}}) \eta^2}{\eta^2_{\mathrm{max}}} \right]^{-1}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is the number density, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2=2} is the reduced second virial coefficient, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta = a_0(\sigma)\rho} is the packing fraction, with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0(\sigma) = (\pi/4)\sigma^2} the area of a hard disk with diameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta_{\mathrm{max}} = \pi \sqrt3 /6 }
References[edit]
- A. Santos, M. López de Haro, and S. Bravo Yuste "An accurate and simple equation of state for hard disks", Journal of Chemical Physics 103 4622 (1995)
- Mariano López de Haro, Andrés Santos and Santos Bravo Yuste "A student-oriented derivation of a reliable equation of state for a hard-disc fluid", European Journal of Physics 19 pp. 281-286 (1998)
- Mariano López de Haro, Andrés Santos, and Santos B. Yuste "Simple equation of state for hard disks on the hyperbolic plane", Journal of Chemical Physics 129 116101 (2008)