Rotational relaxation

From SklogWiki
Jump to navigation Jump to search

Rotational relaxation refers to the decay of certain autocorrelation magnitudes related to the orientation of molecules. If a molecule has an orientation along a unit vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbf n}} , its autocorrelation will be given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1(t)=\langle \mathbf{n}(0)\cdot\mathbf{n}(t) \rangle.}

From the time decay, or relaxation, of this function, one may extract a characteristic relaxation time (either from the long-time exponential decay, or from its total integral, see autocorrelation). This magnitude, which is readily computed in a simulation is not directly accessible experimentally, however. Rather, relaxation times of the second spherical harmonic are obtained:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2(t)=\langle P_2( \mathbf{n}(0)\cdot\mathbf{n}(t) ) \rangle,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2(x)} is the second Legendre polynomial.

According to simple rotational diffusion theory, the relaxation time for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1(t)} would be given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_1 = \frac{1}{2D_\mathrm{rot}}} , and the relaxation time for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2(t)} would be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_2 = \frac{1}{6D_\mathrm{rot}}} . Therefore, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_1= 3 \tau_2} . This ratio is actually lower in simulations, and closer to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} ; the departure from a value of 3 signals rotation processes "rougher" than what is assumed in simple rotational diffusion (Ref 1).

Water[edit]

Main article Rotational relaxation of water

Often, molecules are more complex geometrically and can not be described by a single orientation. In this case, several vectors should be considered, each with its own autocorrelation. E.g., typical choices for water molecules would be:

symbol explanation experimental value, and method
HH H-H axis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_2=2.0} ps (H-H dipolar relaxation NMR)
OH O-H axis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_2=1.95} ps (17O-H dipolar relaxation NMR)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} dipolar axis not measurable, but related to bulk dielectric relaxation
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \perp} normal to the molecule plane not measurable

See also[edit]

References[edit]

  1. David van der Spoel, Paul J. van Maaren, and Herman J. C. Berendsen "A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field", J. Chem. Phys. 108 10220 (1998)