Kirkwood-Buff theory of solutions
Jump to navigation
Jump to search
Kirkwood-Buff integrals [1]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{\alpha \beta} = \int_0^\infty \left[{\mathrm g}_{\alpha \beta}^{(2)}({\mathbf r})-1\right] 4\pi r^2 ~d{\mathbf r}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathrm g}_{\alpha \beta}({\mathbf r})} is the pair distribution function.
References[edit]
Related reading
- A. Ben-Naim "Inversion of the Kirkwood–Buff theory of solutions: Application to the water–ethanol system", Journal of Chemical Physics 67 pp. 4884-4890 (1977)
- Arieh Ben-Naim "The Kirkwood–Buff integrals for one-component liquids" Journal of Chemical Physics 128 234501 (2008)
- Elizabeth A. Ploetz, Nikolaos Bentenitis, and Paul E. Smith "Kirkwood–Buff integrals for ideal solutions", Journal of Chemical Physics 132 164501 (2010)
- R. Cortes-Huerto, K. Kremer and R. Potestio "Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations", Journal of Chemical Physics 145 141103 (2016)
-  David M. Rogers "Extension of Kirkwood-Buff theory to the canonical ensemble", Journal of Chemical Physics 148 054102 (2018)
- Noura Dawass, Peter Krüger, Jean-Marc Simon & Thijs J. H. Vlugt "Kirkwood–Buff integrals of finite systems: shape effects", Molecular Physics 116 pp. 1573-1580 (2018)