Gibbs distribution
Jump to navigation
Jump to search
Ref 1 Eq. 3.37:
where is the number of particles, is the Hamiltonian of the system and is the temperature (to convert into the more familiar kelvin scale one divides by the Boltzmann constant ). The constant is found from the normalization condition (Ref. 1 Eq. 3.38)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\Gamma_{(N)}^{(0)}Z_{(N)}} \int_V \exp \left( - \frac{U_1,..., _N}{\Theta}\right) ~{\rm d}^3r_1 ... {\rm d}^3r_N \int_{- \infty}^{\infty} \exp \left( - \frac{K_{(N)}}{\Theta}\right) ~{\rm d}^3p_1 ... {\rm d}^3p_N =1}
which leads to (Ref. 1 Eq. 3.40)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{(N)}= \frac{1}{V^N} Q_{(N)}}
where (Ref. 1 Eq. 3.41)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{(N)} = \int_V \exp \left( - \frac{U_1,..., _N}{\Theta}\right) ~{\rm d}^3r_1 ... {\rm d}^3r_N}
this is the statistical integral
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z \equiv \sum_n e^{-E_n/T}= {\rm tr} ~ e^{-H|T}}
where is the Hamiltonian of the system.
References[edit]
- G. A. Martynov "Fundamental Theory of Liquids. Method of Distribution Functions", Adam Hilger (out of print)