Gibbs distribution

From SklogWiki
Jump to navigation Jump to search

Ref 1 Eq. 3.37:

where is the number of particles, is the Hamiltonian of the system and is the temperature (to convert into the more familiar kelvin scale one divides by the Boltzmann constant ). The constant Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z_{(N)}} is found from the normalization condition (Ref. 1 Eq. 3.38)

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {1}{\Gamma _{(N)}^{(0)}Z_{(N)}}}\int _{V}\exp \left(-{\frac {U_{1},...,_{N}}{\Theta }}\right)~{\rm {d}}^{3}r_{1}...{\rm {d}}^{3}r_{N}\int _{-\infty }^{\infty }\exp \left(-{\frac {K_{(N)}}{\Theta }}\right)~{\rm {d}}^{3}p_{1}...{\rm {d}}^{3}p_{N}=1}

which leads to (Ref. 1 Eq. 3.40)

where (Ref. 1 Eq. 3.41)

this is the statistical integral

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z\equiv \sum _{n}e^{-E_{n}/T}={\rm {tr}}~e^{-H|T}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} is the Hamiltonian of the system.

References[edit]

  1. G. A. Martynov "Fundamental Theory of Liquids. Method of Distribution Functions", Adam Hilger (out of print)