Editing Second virial coefficient

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:
The second virial coefficient, in three dimensions, is given by
The second virial coefficient, in three dimensions, is given by


:<math>B_{2}(T)= - \frac{1}{2} \int \left( \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right) -1 \right) 4 \pi r^2 dr </math>  
:<math>B_{2}(T)= - \frac{1}{2} \int \left( \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle -1 \right) 4 \pi r^2 dr </math>  


where <math>\Phi_{12}({\mathbf r})</math> is the [[intermolecular pair potential]], ''T'' is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]]. Notice that the expression within the parenthesis  
where <math>\Phi_{12}({\mathbf r})</math> is the [[intermolecular pair potential]], ''T'' is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]]. Notice that the expression within the parenthesis  
of the integral is the [[Mayer f-function]].
of the integral is the [[Mayer f-function]].
In practice  the integral is often ''very hard'' to integrate analytically for anything other than, say, the [[Hard sphere: virial coefficients | hard sphere model]], thus one numerically evaluates
:<math>B_{2}(T)= - \frac{1}{2} \int \left( \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle -1 \right) 4 \pi r^2 dr </math>
calculating
:<math> \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle</math>
for each <math>r</math> using the numerical integration scheme proposed by Harold Conroy <ref>[http://dx.doi.org/10.1063/1.1701795 Harold Conroy "Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals", Journal of Chemical Physics '''47''' pp. 5307 (1967)]</ref><ref>[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp. 65-79 (1989)]</ref>.
==Isihara-Hadwiger formula==
==Isihara-Hadwiger formula==
The Isihara-Hadwiger formula was discovered simultaneously and independently by Isihara
The Isihara-Hadwiger formula was discovered simultaneously and independently by Isihara
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)