Vega equation of state for hard ellipsoids

From SklogWiki
Revision as of 12:28, 19 February 2010 by Carl McBride (talk | contribs) (→‎References: Added volume and page numbers.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The Vega equation of state for an isotropic fluid of hard (biaxial) ellipsoids is given by [1] (Eq. 20):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = 1+B_2^*y + B_3^*y^2 + B_4^*y^3 + B_5^*y^4 + \frac{B_2}{4} \left( \frac{1+y+y^2-y^3}{(1-y)^3} -1 -4y -10y^2 -18.3648y^3 - 28.2245y^4 \right) }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} is the compressibility factor and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is the volume fraction, given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y= \rho V} where is the number density. The virial coefficients are given by the fits

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_3^* = 10 + 13.094756 \alpha' - 2.073909\tau' + 4.096689 \alpha'^2 + 2.325342\tau'^2 - 5.791266\alpha' \tau',}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_4^* = 18.3648 + 27.714434\alpha' - 10.2046\tau' + 11.142963\alpha'^2 + 8.634491\tau'^2 - 28.279451\alpha' \tau' - 17.190946\alpha'^2 \tau' + 24.188979\alpha' \tau'^2 + 0.74674\alpha'^3 - 9.455150\tau'^3,}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5^* = 28.2245 + 21.288105\alpha' + 4.525788\tau' + 36.032793\alpha'^2 + 59.0098\tau'^2 - 118.407497\alpha' \tau' + 24.164622\alpha'^2 \tau' + 139.766174\alpha' \tau'^2 - 50.490244\alpha'^3 - 120.995139\tau'^3 + 12.624655\alpha'^3\tau', }

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n^*= B_n/V^{n-1}} ,


and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha' = \frac{RS}{3V}-1.}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} , the surface area, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} the mean radius of curvature. These can be calculated using this Mathematica notebook file for calculating the surface area and mean radius of curvature of an ellipsoid. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_2} see the page "Second virial coefficient".

References[edit]

Related reading

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.