The Wigner D-matrix (also known as the Wigner rotation matrix) is a square matrix, of dimension
, given by (Ref. 2 Eq. 4.12)

where
and
are Euler angles, and
where
, known as Wigner's reduced d-matrix, is given by (Ref. 2 Eq. 4.11 and 4.13)
![{\displaystyle {\begin{array}{lcl}d_{m'm}^{j}(\beta )&=&D_{m'm}^{j}(0,\beta ,0)\\&=&\langle jm'|e^{-i\beta j_{y}}|jm\rangle \\&=&[(j+m)!(j-m)!(j+m')!(j-m')!]^{1/2}\sum _{\chi }{\frac {(-1)^{\chi }}{(j-m'-\chi )!(j+m-\chi )!(\chi +m'-m)!\chi !}}\\&&\times \left(\cos {\frac {\beta }{2}}\right)^{2j+m-m'-2\chi }\left(-\sin {\frac {\beta }{2}}\right)^{m'-m+2\chi }\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b328493f438280cb71675325910dfd5c2f233826)
The sum over
is restricted to those values that do not lead to negative factorials.
This function represents a rotation of
about the (initial frame)
axis.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional
to spherical harmonics (normalized to unity)

References
- Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931).
- M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) ISBN 0486684806
- Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM 419 pp. 19-27 (1997)
- Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics 124 144115 (2006)
External links