Path integral formulation

From SklogWiki
Revision as of 14:39, 21 October 2008 by Carl McBride (talk | contribs) (→‎Rotational degrees of freedom: Added a little content.)
Jump to navigation Jump to search
This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

In the path integral formulation the canonical partition function (in one dimension) is written as (Ref. review #4 Eq. 1)

where is the Euclidian action, given by (Ref. review #4 Eq. 2)

where is the path in time and is the Hamiltonian. This leads to (Ref. review #4 Eq. 3)

where the Euclidean time is discretised in units of

and ((Ref. review #4 Eq. 4)

.

where is the Trotter number. In the Trotter limit, where these equations become exact. In the case where these equations revert to a classical simulation. It has long been recognised that there is an isomorphism between this discretised quantum mechanical description, and the classical statistical mechanics of polyatomic fluids, in particular flexible ring molecules (Ref. 1), due to the periodic boundary conditions in imaginary time.

Rotational degrees of freedom

In the case of systems having () rotational degrees of freedom the Hamiltonian can be written in the form (Ref. 1 Eq. 2.1):

where the rotational part of the kinetic energy operator is given by (Ref. 1 Eq. 2.2)

where are the components of the angular momentum operator, and are the moments of inertia.

  1. Dominik Marx and Martin H Müser "Path integral simulations of rotors: theory and applications", Journal of Physics: Condensed Matter 11 pp. R117-R155 (1999)

Techniques

Path integral Monte Carlo

Path integral Monte Carlo (PIMC)

  1. J. A. Barker "A quantum-statistical Monte Carlo method; path integrals with boundary conditions", Journal of Chemical Physics 70 pp. 2914- (1979)

Path integral molecular dynamics

Path integral molecular dynamics (PIMC)

  1. M. Parrinello and A. Rahman "Study of an F center in molten KCl", Journal of Chemical Physics 80 pp. 860- (1984)

Centroid molecular dynamics

Centroid molecular dynamics (CMD)

  1. Jianshu Cao and Gregory A. Voth "The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties", Journal of Chemical Physics 100 pp. 5106- (1994)
  2. Seogjoo Jang and Gregory A. Voth "A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables", Journal of Chemical Physics 111 pp. 2371- (1999)

Ring polymer molecular dynamics

Ring polymer molecular dynamics (RPMD)

  1. Ian R. Craig and David E. Manolopoulos "Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics", Journal of Chemical Physics 121 pp. 3368- (2004)
  2. Bastiaan J. Braams and David E. Manolopoulos "On the short-time limit of ring polymer molecular dynamics", Journal of Chemical Physics 125 124105 (2006)
  3. Thomas E. Markland and David E. Manolopoulos "An efficient ring polymer contraction scheme for imaginary time path integral simulations", Journal of Chemical Physics 129 024105 (2008)

External links

General Reading

Reviews

  1. R. P. Feynman and A. R. Hibbs, Path-integrals and Quantum Mechanics (McGraw-Hill, New York, 1965) ISBN 0-07-020650-3
  2. R. P. Feynman, Statistical Mechanics (Benjamin, Reading, Mass., 1972)
  3. David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics 74 pp. 4078-4095 (1981)
  4. B. J. Berne and ­D. Thirumalai "On the Simulation of Quantum Systems: Path Integral Methods", Annual Review of Physical Chemistry 37 pp. 401-424 (1986)
  5. D. M. Ceperley "Path integrals in the theory of condensed helium", Reviews of Modern Physics 67 279 - 355 (1995)
  6. Charusita Chakravarty "Path integral simulations of atomic and molecular systems", International Reviews in Physical Chemistry 16 pp. 421-444 (1997)
  7. M. J. Gillan "The path-integral simulation of quantum systems" in "Computer Modelling of Fluids Polymers and Solids" eds. C. R. A. Catlow, S. C. Parker and M. P. Allen, NATO ASI Series C 293 pp. 155-188 (1990)

Applications

Phase transitions, quantum dynamics, centroids etc.

  1. J. R. Melrose and K. Singer "An investigation of supercooled Lennard-Jones argon by quantum mechanical and classical Monte Carlo simulation", Molecular Physics 66 1203-1214 (1989)
  2. Jianshu Cao and Gregory A. Voth "The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties", Journal of Chemical Physics 100 pp. 5093-5105 (1994)
  3. Jianshu Cao and Gregory A. Voth "Semiclassical approximations to quantum dynamical time correlation functions", Journal of Chemical Physics 104 pp. 273-285 (1996)
  4. Rafael Ramírez and Telesforo López-Ciudad "The Schrödinger formulation of the Feynman path centroid density", Journal of Chemical Physics 111 pp. 3339-3348 (1999)
  5. C. Chakravarty and R. M. Lynden-Bell "Landau free energy curves for melting of quantum solids", Journal of Chemical Physics 113 pp. 9239-9247 (2000)

References

  1. David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics 74 pp. 4078-4095 (1981)