Legendre polynomials

From SklogWiki
Revision as of 09:16, 23 June 2008 by Carl McBride (talk | contribs) (→‎References: Slight tidy of reference.)
Jump to navigation Jump to search

Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral

Legendre polynomials can also be defined (Ref 1) using Rodrigues formula as:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{n}(x)={\frac {1}{2^{n}n!}}{\frac {d^{n}}{dx^{n}}}(x^{2}-1)^{n}}

Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{-1}^{1}P_{n}(x)P_{m}(x)dx=0,} for

whereas

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{-1}^{1}P_{n}(x)P_{n}(x)dx={\frac {2}{2n+1}}}

The first seven Legendre polynomials are:







"shifted" Legendre polynomials (which obey the orthogonality relationship in the range [0:1]):




Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\overline {P}}_{3}(x)=20x^{3}-30x^{2}+12x-1}

Powers in terms of Legendre polynomials:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x\right.=P_{1}(x)}


Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{2}={\frac {1}{3}}[P_{0}(x)+2P_{2}(x)]}





Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{6}={\frac {1}{231}}[33P_{0}(x)+110P_{2}(x)+72P_{4}(x)+16P_{6}(x)]}

See also

References

  1. B. P. Demidotwitsch, I. A. Maron, and E. S. Schuwalowa, "Métodos numéricos de Análisis", Ed. Paraninfo, Madrid (1980) (translated from Russian text)