Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics)
are solutions of the Legendre differential equation.
The Legendre polynomial,  can be defined by the contour integral
 can be defined by the contour integral
 
Legendre polynomials can also be defined using Rodrigues formula as:
 
The first seven  Legendre polynomials are:
 
 
 
 
 
 
 
"shifted" Legendre polynomials (which obey the orthogonality relationship):
 
 
 
 
Powers in terms of Legendre polynomials:
 
![{\displaystyle x^{2}={\frac {1}{3}}[P_{0}(x)+2P_{2}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/685bc6005f1f71112eeab78e10c0c63633df1c8f) 
![{\displaystyle x^{3}={\frac {1}{5}}[3P_{1}(x)+2P_{3}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f95e83961b601f0a2b99d603e01a354f4897a919) 
![{\displaystyle x^{4}={\frac {1}{35}}[7P_{0}(x)+20P_{2}(x)+8P_{4}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7cc35ab8fd4a4db04d6578858127d33eb56170) 
![{\displaystyle x^{5}={\frac {1}{63}}[27P_{1}(x)+28P_{3}(x)+8P_{5}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d52e1477750ad3d0c7e672dea0ffe46771c7e074) 
![{\displaystyle x^{6}={\frac {1}{231}}[33P_{0}(x)+110P_{2}(x)+72P_{4}(x)+16P_{6}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99acb8dfaa1450eba1cfd4b575e1982776f818a7) 
See also