The Wigner D-matrix (also known as the Wigner rotation matrix) is a square matrix, of dimension
, given by

where
and
are Euler angles, and
where
, known as Wigner's reduced d-matrix, is given by
![{\displaystyle {\begin{array}{lcl}d_{m'm}^{j}(\beta )&=&D_{m'm}^{j}(0,\beta ,0)\\&=&\langle jm'|e^{-i\beta j_{y}}|jm\rangle \\&=&[(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2}\sum _{s}{\frac {(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!}}\\&&\times \left(\cos {\frac {\beta }{2}}\right)^{2j+m-m'-2s}\left(\sin {\frac {\beta }{2}}\right)^{m'-m+2s}\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/453ab125baea9389abca65e620d3686a6e5b7c59)
This represents a rotation of
about the (inital frame)
axis.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional
to spherical harmonics (normalized to unity)

External links
References
- E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931).
- Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics 124 144115 (2006)