Ideal gas: Energy

From SklogWiki
Revision as of 13:46, 9 May 2008 by Dduque (talk | contribs) (link added)
Jump to navigation Jump to search

The energy of the ideal gas is given by (Hill Eq. 4-16)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = -T^2 \left. \frac{\partial (A/T)}{\partial T} \right\vert_{V,N} = kT^2 \left. \frac{\partial \ln Q}{\partial T} \right\vert_{V,N}= NkT^2 \frac{d \ln T^{3/2}}{dT} = \frac{3}{2} NkT}

This energy is all kinetic energy, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2 kT} per degree of freedom, by equipartition. This is because there are no intermolecular forces, thus no potential energy.

References

  1. Terrell L. Hill "An Introduction to Statistical Thermodynamics" 2nd Ed. Dover (1962)