Stokes-Einstein relation
The Stokes-Einstein relation, originally derived by William Sutherland (Ref. 1) but almost simultaneously published by Einstein (Ref. 2), states that, for a sphere of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} immersed in a fluid,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\frac{k_B T}{6\pi\eta r} }
where D is the diffusion constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, T is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta} is the viscosity.
References
- William Sutherland "A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin", Philosophical Magazine 9 pp. 781-785 (1905)
- A. Einstein "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik 17 pp. 549-560 (1905)
- Robert Zwanzig and Alan K. Harrison "Modifications of the Stokes–Einstein formula", Journal of Chemical Physics 83 pp. 5861-5862 (1985)
- M. Cappelezzo, C. A. Capellari, S. H. Pezzin, and L. A. F. Coelho "Stokes-Einstein relation for pure simple fluids", Journal of Chemical Physics 126 224516 (2007)