Replica method
The Helmholtz energy function of fluid in a matrix of configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ q^{N_0} \}} in the Canonical (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NVT} ) ensemble is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta A_1 (q^{N_0}) = \log Z_1 (q^{N_0}) = \log \left( \frac{1}{N_1!} \int \exp [- \beta (H_{01}(r^{N_1}, q^{N_0}) + H_{11}(r^{N_1}, q^{N_0}) )]~d \{ r \}^{N_1} \right)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_1 (q^{N_0})} is the fluid partition function, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{00}} is the Hamiltonian of the matrix. Taking an average over matrix configurations gives
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~ \log Z_1 (q^{N_0}) ~d \{ q \}^{N_0}}
(Ref.s 1 and 2) An important mathematical trick to get rid of the logarithm inside of the integral is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s}
one arrives at
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \beta H^{\rm {rep}}(r^{N_{1}},q^{N_{0}})={\frac {\beta _{0}}{\beta }}H_{00}(q^{N_{0}})+\sum _{\lambda =1}^{s}\left(H_{01}^{\lambda }(r^{N_{1}},q^{N_{0}})+H_{11}^{\lambda }(r^{N_{1}},q^{N_{0}})\right)}
The Hamiltonian written in this form describes a completely equilibrated system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s+1} components; the matrix and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} identical non-interacting copies (replicas) of the fluid. Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen and the replica (equilibrium) system is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] } .