Free energy of fluid in a matrix of configuration
in the Canonical (
) ensemble is given by:
![{\displaystyle -\beta F_{1}(q^{N_{0}})=\log Z_{1}(q^{N_{0}})=\log \left({\frac {1}{N_{1}!}}\int \exp[-\beta (H_{01}(r^{N_{1}},q^{N_{0}})+H_{11}(r^{N_{1}},q^{N_{0}}))]~d\{r\}^{N_{1}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f74cbf072f71d15e4b491fd8a012cece730c11f)
where
is the fluid partition function, and
is the Hamiltonian of the matrix.
Taking an average over matrix configurations gives
![{\displaystyle -\beta {\overline {F}}_{1}={\frac {1}{N_{0}!Z_{0}}}\int \exp[-\beta _{0}H_{00}(q^{N_{0}})]~\log Z_{1}(q^{N_{0}})~d\{q\}^{N_{0}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49eace97c11d987a7126d023fae17fb300458fbd)
\cite{JPFMP_1975_05_0965,JPAMG_1976_09_01595}
Important mathematical trick to get rid of the logarithm inside of the integral:

one arrives at

The Hamiltonian written in this form describes a completely equilibrated system
of
components; the matrix and
identical non-interacting copies (replicas) of the fluid.
Thus the relation between the free energy of the non-equilibrium partially frozen
and the replica (equilibrium) system is given by
![{\displaystyle -\beta {\overline {F}}_{1}=\lim _{s\rightarrow 0}{\frac {\rm {d}}{{\rm {d}}s}}[-\beta F^{\rm {rep}}(s)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3b985e59e918c30429d038a35d0d407baeeb25aa)
References
- S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics 5 pp. 965-974 (1975)
- S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General 9 pp. 1595-1603 (1976)