Ising model
Also known as the Lenz-Ising model.
Ising Model
The Ising model is commonly defined over an ordered lattice. Each site of the lattice can adopt two states: either UP (S=+1) or DOWN (S=-1).
The energy of the system is the sum of pair interactions between nearest neighbors.
where indicates that the sum is done over nearest neighbors, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_i } indicates the state of the i-th site.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K } is called the Coupling constant.
1-dimensional Ising model
- 1-dimensional Ising model (exact solution)
2-dimensional Ising model
Solved by Lars Onsager in 1944.
3-dimensional Ising model
Sorin Istrail has shown that the solution of Ising's model cannot be extended into three dimensions for any lattice:
- Three-dimensional proof for Ising model impossible, Sandia researcher claims to have shown
- Sorin Istrail "Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces", Proceedings of the thirty-second annual ACM symposium on Theory of computing pp. 87 - 96 (2000)