Building up a diamond lattice
[EN CONSTRUCCION]
- Consider:
- a cubic simulation box whose sides are of length
- a number of lattice positions, given by ,
with being a positive integer
- The positions are those given by:
where the indices of a given valid site are integer numbers that must fulfill the following criteria
- ,
- the sum of can have only the values: 0, 3, 4, 7, 8, 10, ...
i.e, ; OR; , with being any integer number
- the indices must be either all even or all odd.
with
Atomic position(s) on a cubic cell
- Number of atoms per cell: 4
- Coordinates:
Atom 1:
Atom 2: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{2},y_{2},z_{2}\right)=\left(0,{\frac {l}{2}},{\frac {l}{2}}\right)}
Atom 3: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{3},y_{3},z_{2}\right)=\left({\frac {l}{2}},0,{\frac {l}{2}}\right)}
Atom 4: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(x_{4},y_{4},z_{2}\right)=\left({\frac {l}{2}},{\frac {l}{2}},0\right)}
Cell dimensions:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c = l }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \beta = \gamma = 90^0 }