1-dimensional Ising model
Model: Consider a system with spins in a row.
The energy of the system will be given by
,
where each variable can be either -1 or +1.
The partition function of the system will be:
,
where represents the possible configuration of the N spins of the system,
and
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{N+1}=\sum _{S_{1}}\sum _{S_{2}}e^{kS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N}}e^{KS_{N-1}S_{N}}\sum _{S_{N+1}}e^{KS_{N}S_{N+1}}}
Performing the sum of the possible values of we get:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{N+1}=\sum _{S_{1}}\sum _{S_{2}}e^{kS_{1}S_{2}}\sum _{S_{3}}e^{KS_{2}S_{3}}\cdots \sum _{S_{N}}e^{KS_{N-1}S_{N}}\left[2\cosh(KS_{N})\right]}
Taking into account that
Therefore:
The Helmholtz free energy in the thermodynamic limit will be