Compressibility equation

From SklogWiki
Jump to navigation Jump to search

The compressibility equation () can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 in Ref. 1). For a homogeneous system:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle kT \left.\frac{\partial \rho }{\partial P}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}r = 1+\rho \int [{\rm g}^{(2)}(r) -1 ] {\rm d}r= \frac{ \langle N^2 \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho k_B T \chi_T}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}^{(2)}(r)} is the pair distribution function. For a spherical potential

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{kT} \left.\frac{\partial P}{\partial \rho}\right\vert_{T} = 1 - \rho \int_0^{\infty} c(r) ~4 \pi r^2 ~{\rm d}r \equiv 1- \rho \hat{c}(0) \equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}}

Note that the compressibility equation, unlike the energy and pressure equations, is valid even when the inter-particle forces are not pairwise additive.

References

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)