Legendre polynomials

From SklogWiki
Revision as of 18:04, 30 May 2007 by Carl McBride (talk | contribs) (New page: '''Legendre polynomials''' (aka. Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation]. The Legendre pol...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Legendre polynomials (aka. Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation]. The Legendre polynomial, can be defined by the contour integral

The first seven Legendre polynomials are:







"shifted" Legendre polynomials (which obey the orthogonality relationship):




Powers in terms of Legendre polynomials:






Associated Legendre polynomials.




Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2^0 (x) =\frac{1}{2}(3x^2-1)}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2^1 (x) =-3x(1-x^2)^{1/2}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_2^2 (x) =3(1-x^2)}

etc.