Duh Haymet
The Duh-Haymet (Ref. 1) (1995) Padé (3/2) approximation for the Bridge function for the Lennard Jones system is (Eq. 13)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle B(\gamma ^{*})=-{\frac {1}{2}}\gamma ^{*2}\left[{\frac {1}{\left[1+\left({\frac {5\gamma ^{*}+11}{7\gamma ^{*}+9}}\right)\gamma ^{*}\right]}}\right]}
where (Eq. 10) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma^{*}(r) = \gamma (r) - \beta \Phi_p(r)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_p (r)} is the perturbative part of the pair potential (Note: in the WCA separation for the Lennard Jones system, the `perturbative part' is the attractive part).