Mie potential

From SklogWiki
Revision as of 13:59, 24 February 2017 by Carl McBride (talk | contribs) (→‎References: Added a recent publication)
Jump to navigation Jump to search

The Mie potential was proposed by Gustav Mie in 1903 [1]. It is given by

where:

  • is the intermolecular pair potential between two particles at a distance r;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)=0}  ;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon }  : well depth (energy)

Note that when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=12} and this becomes the Lennard-Jones model.

The location of the potential minimum is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{min} = \left( \frac{n}{m} \sigma^{n-m} \right) ^ {1/(n-m)} }

(14,7) model

[2] [3]

Second virial coefficient

The second virial coefficient [4] and the Vliegenthart–Lekkerkerker relation [5].

References

Related reading