n-6 Lennard-Jones potential

From SklogWiki
Revision as of 09:53, 14 May 2015 by Carl McBride (talk | contribs) (Undo revision 14651 by Carl McBride (talk))
Jump to navigation Jump to search

The n-6 Lennard-Jones potential is a variant the more well known Lennard-Jones model (or from a different point of view, a particular case of the Mie potential). The potential is given by [1]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r) = \epsilon \left( \frac{n}{n-6} \right)\left( \frac{n}{6} \right)^{\frac{6}{n-6}} \left[ \left(\frac{\sigma}{r} \right)^{n}- \left( \frac{\sigma}{r}\right)^6 \right] }

where

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r) } is the intermolecular pair potential between two particles, "1" and "2".
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the diameter (length), i.e. the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} at which
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } is the well depth (energy)

Melting point

An approximate method to locate the melting point is given in [2]. See also [3].

Shear viscosity

[4]

References

Related reading