Grand canonical ensemble

From SklogWiki
Revision as of 11:30, 31 August 2011 by Carl McBride (talk | contribs) (Slight tidy.)
Jump to navigation Jump to search

The grand-canonical ensemble is for "open" systems, where the number of particles, , can change. It can be viewed as an ensemble of canonical ensembles; there being a canonical ensemble for each value of , and the (weighted) sum over of these canonical ensembles constitutes the grand canonical ensemble. The weighting factor is and is known as the fugacity. The grand-canonical ensemble is particularly well suited to simulation studies of adsorption.

Ensemble variables

Grand canonical partition function

The grand canonical partition function for a one-component system in a three-dimensional space is given by:

i.e. for a classical system one has

where:

  • is the number of particles
  • is the de Broglie thermal wavelength (which depends on the temperature)
  • , with being the Boltzmann constant
  • is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • represent the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3N} position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }

Helmholtz energy and partition function

The corresponding thermodynamic potential, the grand potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , for the aforementioned grand canonical partition function is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = \left. A - \mu N \right. } ,

where A is the Helmholtz energy function. Using the relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.U\right.=TS -pV + \mu N}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Omega \right.= -pV}

i.e.:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.pV=k_{B}T\ln \Xi _{\mu VT}\right.}

See also

References

Related reading