Hard core Yukawa potential: Difference between revisions
Carl McBride (talk | contribs) m (Started section on Two-term Yukawa potentials) |
Carl McBride (talk | contribs) m (Hard core Yukawa moved to Hard core Yukawa potential) |
(No difference)
|
Revision as of 11:40, 22 February 2010
The hard core Yukawa potential has two forms, the attractive Yukawa potential:
and the repulsive form
where is the intermolecular pair potential, is the distance between site 1 and site 2, is the hard diameter, is the energy well depth (), and is a parameter that controls the interaction range ().
The repulsive form has been used to study charge-stabilised colloid-colloid interactions.
Critical point
For the attractive form of the potential, from a study of the law of corresponding states, one has (Eq. 3 in [1])
and (Eq. 4)
- .
The repulsive form of the potential has no critical point.
Triple points
The triple points for this model have been studied by Azhar and co-workers [2].
Virial coefficients
For the attractive form of the potential the virial coefficients have been calculated by Naresh and Singh [3].
Phase diagram
- Main article: Phase diagram of the Yukawa potential
Two-term Yukawa potentials
Both the attractive and the repulsive form have been combined to produce the hard-sphere plus two Yukawa potential (H2Y) [4].
References
- ↑ Pedro Orea and Yurko Duda "On the corresponding states law of the Yukawa fluid", Journal of Chemical Physics 128 134508 (2008)
- ↑ Fouad El Azhar, Marc Baus, Jean-Paul Ryckaert and Evert Jan Meijer "Line of triple points for the hard-core Yukawa model: A computer simulation study", Journal of Chemical Physics 112 pp. 5121- (2000)
- ↑ D.J. Naresh and Jayant K. Singh "Virial coefficients of hard-core attractive Yukawa fluids", Fluid Phase Equilibria 285 pp. 36-43 (2009)
- ↑ Lloyd L. Lee, Michael C. Hara, Steven J. Simon, Franklin S. Ramos, Andrew J. Winkle, and Jean-Marc Bomont "Crystallization limits of the two-term Yukawa potentials based on the entropy criterion", Journal of Chemical Physics 132 074505 (2010)
Related reading