Replica method: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (Added disambiguation)
 
Line 1: Line 1:
:''This article is about integral equations. For other the simulation method, see [[Replica-exchange simulated tempering]] or [[Replica-exchange molecular dynamics]]''.
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
<math>\{ {\mathbf q}^{N_0} \}</math> in the [[Canonical ensemble]] is given by:
<math>\{ {\mathbf q}^{N_0} \}</math> in the [[Canonical ensemble]] is given by:

Latest revision as of 17:56, 11 February 2010

This article is about integral equations. For other the simulation method, see Replica-exchange simulated tempering or Replica-exchange molecular dynamics.

The Helmholtz energy function of fluid in a matrix of configuration in the Canonical ensemble is given by:

where is the fluid partition function, and , and are the pieces of the Hamiltonian corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian , we can average over matrix configurations to obtain

(see Refs. 1 and 2)

An important mathematical trick to get rid of the logarithm inside of the integral is to use the mathematical identity
.

One can apply this trick to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log Z_1} we want to average, and replace the resulting power Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (Z_1)^s} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} copies of the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_1} (replicas). The result is equivalent to evaluate as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\beta\overline{A}_1=\lim_{s\to 0}\frac{d}{ds}\left(\frac{Z^{\rm rep}(s)}{Z_0}\right) } ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z^{\rm rep}(s)} is the partition function of a mixture with Hamiltonian

This Hamiltonian describes a completely equilibrated system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s+1} components; the matrix the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} identical non-interacting replicas of the fluid. Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0=Z^{\rm rep}(0)} , then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{s\to 0}\frac{d}{ds}[-\beta A^{\rm rep}(s)]=\lim_{s\to 0}\frac{d}{ds}\log Z^{\rm rep}(s)=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z^{\rm rep}(s)}=\lim_{s\to 0}\frac{\frac{d}{ds}Z^{\rm rep}(s)}{Z_0}=-\beta\overline{A}_1.}

Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen system and the replicated (equilibrium) system is given by

.

Interesting reading[edit]

  • Viktor Dotsenko "Introduction to the Replica Theory of Disordered Statistical Systems", Collection Alea-Saclay: Monographs and Texts in Statistical Physics, Cambridge University Press (2000)

References[edit]

  1. S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics 5 pp. 965-974 (1975)
  2. S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General 9 pp. 1595-1603 (1976)