Soft sphere potential: Difference between revisions
Jump to navigation
Jump to search
m (Added a new reference.) |
m (Added a new reference.) |
||
Line 7: | Line 7: | ||
</math> | </math> | ||
where <math> \Phi_{12}\left(r \right) </math> is the [[intermolecular pair potential]] between two soft spheres separated by a distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\epsilon </math> is the interaction strength and <math> \sigma </math> is the diameter of the sphere. Frequently the value of <math>n</math> is taken to be 12, thus the model effectively becomes the high temperature limit of the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1103/PhysRevA.2.221 Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A '''2''' pp. 221-230 (1970)]</ref>. | where <math> \Phi_{12}\left(r \right) </math> is the [[intermolecular pair potential]] between two soft spheres separated by a distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\epsilon </math> is the interaction strength and <math> \sigma </math> is the diameter of the sphere. Frequently the value of <math>n</math> is taken to be 12, thus the model effectively becomes the high temperature limit of the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1103/PhysRevA.2.221 Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A '''2''' pp. 221-230 (1970)]</ref>. If <math>n\rightarrow \infty</math> one has the [[hard sphere model]]. For <math>n \le 3</math> no thermodynamically stable phases are found. | ||
==Equation of state== | ==Equation of state== | ||
<ref>[http://dx.doi.org/10.1063/1.1672728 William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics '''52''' pp. 4931-4941 (1970)]</ref> | <ref>[http://dx.doi.org/10.1063/1.1672728 William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics '''52''' pp. 4931-4941 (1970)]</ref> | ||
==Solid phase== | ==Solid phase== | ||
<ref>[http://dx.doi.org/10.1080/00268970802603507 Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics '''107''' pp. 295-299 (2009)]</ref> | <ref>[http://dx.doi.org/10.1080/00268970802603507 Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics '''107''' pp. 295-299 (2009)]</ref> | ||
==Glass transition== | |||
<ref>[http://dx.doi.org/10.1063/1.3266845 D. M. Heyes, S. M. Clarke, and A. C. Brańka "Soft-sphere soft glasses", Journal of Chemical Physics '''131''' 204506 (2009)]</ref> | |||
==Transport coefficients== | ==Transport coefficients== | ||
<ref>[http://dx.doi.org/10.1080/00268970802712563 D. M. Heyes and A. C. Branka "Density and pressure dependence of the equation of state and transport coefficients of soft-sphere fluids", Molecular Physics '''107''' pp. 309-319 (2009)]</ref> | <ref>[http://dx.doi.org/10.1080/00268970802712563 D. M. Heyes and A. C. Branka "Density and pressure dependence of the equation of state and transport coefficients of soft-sphere fluids", Molecular Physics '''107''' pp. 309-319 (2009)]</ref> |
Revision as of 11:10, 1 December 2009
The soft sphere potential is defined as
where is the intermolecular pair potential between two soft spheres separated by a distance , is the interaction strength and is the diameter of the sphere. Frequently the value of is taken to be 12, thus the model effectively becomes the high temperature limit of the Lennard-Jones model [1]. If one has the hard sphere model. For no thermodynamically stable phases are found.
Equation of state
Solid phase
Glass transition
Transport coefficients
References
- ↑ Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A 2 pp. 221-230 (1970)
- ↑ William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics 52 pp. 4931-4941 (1970)
- ↑ Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics 107 pp. 295-299 (2009)
- ↑ D. M. Heyes, S. M. Clarke, and A. C. Brańka "Soft-sphere soft glasses", Journal of Chemical Physics 131 204506 (2009)
- ↑ D. M. Heyes and A. C. Branka "Density and pressure dependence of the equation of state and transport coefficients of soft-sphere fluids", Molecular Physics 107 pp. 309-319 (2009)