Hard sphere: virial coefficients: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (Changed references to Cite format.)
Line 1: Line 1:
The [[virial equation of state]] of the [[hard sphere model]], in various dimensions, has long been of interest.  
The [[virial equation of state]] of the [[hard sphere model]], in various dimensions, has long been of interest.  
In 3-dimensions analytical results were  derived (all in 1899) for <math>B_2</math> by [[Johannes Diderik van der Waals]] (Ref. 1), <math>B_3</math> by [[Ludwig Eduard Boltzmann]] (Ref. 2), and <math>B_4</math> by [[Johannis Jacobus van Laar]] (Ref. 3). The calculation of <math>B_5</math> had to wait for the Rosenbluths (Refs. 4) in 1954. Thus far no analytical expressions for <math>B_5</math> and beyond have been derived. One has:
In 3-dimensions analytical results were  derived (all in 1899) for <math>B_2</math> by [[Johannes Diderik van der Waals]]<ref>[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=220&view=image&startrow=1 J. D. van der Waals "Simple deduction of the characteristic equation for substances with extended and composite molecules", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''1''' pp. 138-143 (1899)]</ref>, <math>B_3</math> by [[Ludwig Eduard Boltzmann]]
<ref>L. Boltzmann "On the characteristic equation of v.d.Waals", Versl. Gewone Vergad. Afd. Natuurkd., K. Ned. Akad. Wet. '''7''' pp. 484- (1899)</ref>, and <math>B_4</math> by [[Johannis Jacobus van Laar]]
<ref>[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=203&view=image&startrow=1 J. J. Van Laar "Calculation of the second correction to the quantity b of the equation of condition of Van der Waals", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''1''' pp. 273-287 (1899)]</ref>. The calculation of <math>B_5</math> had to wait for the Rosenbluths
<ref>[http://dx.doi.org/10.1063/1.1740207 Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics '''22''' pp. 881- (1954)]</ref> in 1954. Thus far no analytical expressions for <math>B_5</math> and beyond have been derived. One has:


:<math>\frac{B_2}{V(\mathbb{R}^3)}=4</math>
:<math>\frac{B_2}{V(\mathbb{R}^3)}=4</math>
Line 8: Line 11:
:<math>\frac{B_4}{V(\mathbb{R}^3)^3}= \frac{2707\pi+[438\sqrt{2}-4131 \arccos(1/3)]}{70\pi}= 18.3647684</math>
:<math>\frac{B_4}{V(\mathbb{R}^3)^3}= \frac{2707\pi+[438\sqrt{2}-4131 \arccos(1/3)]}{70\pi}= 18.3647684</math>


where <math>V(\mathbb{R}^3)</math> is the volume of a sphere in three dimensions. For [[hard disks]] (ie. 2-dimensional hard spheres) one has (Ref. 6)
where <math>V(\mathbb{R}^3)</math> is the volume of a sphere in three dimensions. For [[hard disks]] (ie. 2-dimensional hard spheres) one has<ref>[http://dx.doi.org/10.1103/PhysRevE.71.021105 Stanislav Labík, Jirí Kolafa, and Anatol Malijevský, "Virial coefficients of hard spheres and hard disks up to the ninth", Physical  Review E '''71''' pp. 021105 (2005)]</ref>


:<math>\frac{B_2}{V(\mathbb{R}^2)}=2</math>
:<math>\frac{B_2}{V(\mathbb{R}^2)}=2</math>
Line 38: Line 41:


|}
|}
This table is taken directly from Table 1 in Ref. 7.  
This table is taken directly from Table 1 in Ref.<ref>[http://dx.doi.org/10.1007/s10955-005-8080-0  Nathan Clisby and Barry M. McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions", Journal of Statistical Physics '''122''' pp. 15-57 (2006)]</ref>
==See also==
==See also==
*[[Equations of state for hard disks]]
*[[Equations of state for hard disks]]
*[[Equations of state for hard spheres]]
*[[Equations of state for hard spheres]]
== References ==
== References ==
#[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=220&view=image&startrow=1 J. D. van der Waals "Simple deduction of the characteristic equation for substances with extended and composite molecules", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''1''' pp. 138-143 (1899)]
<references/>
# L. Boltzmann "On the characteristic equation of v.d.Waals", Versl. Gewone Vergad. Afd. Natuurkd., K. Ned. Akad. Wet. '''7''' pp. 484- (1899)
'''Related reading'''
#[http://www.digitallibrary.nl/proceedings/search/detail.cfm?pubid=203&view=image&startrow=1 J. J. Van Laar "Calculation of the second correction to the quantity b of the equation of condition of Van der Waals", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''1''' pp. 273-287 (1899)]
*[http://dx.doi.org/10.1023/B:JOSS.0000013959.30878.d2  N. Clisby and B.M. McCoy  "Analytic Calculation of B4 for Hard Spheres in Even Dimensions",  Journal of Statistical Physics '''114''' pp. 1343-1361 (2004)]
#[http://dx.doi.org/10.1063/1.1740207 Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics '''22''' pp. 881- (1954)]
*[http://dx.doi.org/10.1063/1.2821962 Marvin Bishop,  Nathan Clisby and Paula A. Whitlock "The equation of state of hard hyperspheres in nine dimensions for low to moderate densities",  Journal of Chemical Physics '''128''' 034506 (2008)]
#[http://dx.doi.org/10.1023/B:JOSS.0000013959.30878.d2  N. Clisby and B.M. McCoy  "Analytic Calculation of B4 for Hard Spheres in Even Dimensions",  Journal of Statistical Physics '''114''' pp. 1343-1361 (2004)]
*[http://dx.doi.org/10.1063/1.2951456 René D. Rohrmann, Miguel Robles, Mariano López de Haro, and Andrés Santos "Virial series for fluids of hard hyperspheres in odd dimensions", Journal of Chemical Physics '''129''' 014510 (2008)]
#[http://dx.doi.org/10.1103/PhysRevE.71.021105 Stanislav Labík, Jirí Kolafa, and Anatol Malijevský, "Virial coefficients of hard spheres and hard disks up to the ninth", Physical  Review E '''71''' pp. 021105 (2005)]
*[http://dx.doi.org/10.1063/1.2958914 André O. Guerrero and Adalberto B. M. S. Bassi "On Padé approximants to virial series",  Journal of Chemical Physics '''129''' 044509 (2008)]
#[http://dx.doi.org/10.1007/s10955-005-8080-0  Nathan Clisby and Barry M. McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions", Journal of Statistical Physics '''122''' pp. 15-57 (2006)]
#[http://dx.doi.org/10.1063/1.2821962 Marvin Bishop,  Nathan Clisby and Paula A. Whitlock "The equation of state of hard hyperspheres in nine dimensions for low to moderate densities",  Journal of Chemical Physics '''128''' 034506 (2008)]
#[http://dx.doi.org/10.1063/1.2951456 René D. Rohrmann, Miguel Robles, Mariano López de Haro, and Andrés Santos "Virial series for fluids of hard hyperspheres in odd dimensions", Journal of Chemical Physics '''129''' 014510 (2008)]
#[http://dx.doi.org/10.1063/1.2958914 André O. Guerrero and Adalberto B. M. S. Bassi "On Padé approximants to virial series",  Journal of Chemical Physics '''129''' 044509 (2008)]
[[category:virial coefficients]]
[[category:virial coefficients]]
[[category: hard sphere]]
[[category: hard sphere]]
{{numeric}}
{{numeric}}

Revision as of 17:13, 5 November 2009

The virial equation of state of the hard sphere model, in various dimensions, has long been of interest. In 3-dimensions analytical results were derived (all in 1899) for by Johannes Diderik van der Waals[1], by Ludwig Eduard Boltzmann [2], and by Johannis Jacobus van Laar [3]. The calculation of had to wait for the Rosenbluths [4] in 1954. Thus far no analytical expressions for and beyond have been derived. One has:

where is the volume of a sphere in three dimensions. For hard disks (ie. 2-dimensional hard spheres) one has[5]

where is the area of a circle.

Virial / Dimension 2 3 4 5 6 7 8
0.782004... 0.625 0.506340... 0.414063... 0.340941... 0.282227... 0.234614...
0.53223180... 0.2869495... 0.15184606... 0.0759724807... 0.03336314... 0.00986494662... -0.00255768...
0.33355604(1) 0.110252(1) 0.0357041(17) 0.0129551(13) 0.0075231(11) 0.0070724(10) 0.00743092(93)
0.1988425(42) 0.03888198(91) 0.0077359(16) 0.0009815(14) -0.0017385(13) -0.0035121(11) -0.0045164(11)
0.1148728(43) 0.01302354(91) 0.0014303(19) 0.0004162(19) 0.0013066(18) 0.0025386(16) 0.0034149(15)
0.0649930(34) 0.0041832(11) 0.0002888(18) -0.0001120(20) -0.0008950(30) -0.0019937(28) -0.0028624(26)
0.0362193(35) 0.0013094(13) 0.0000441(22) 0.0000747(26) 0.0006673(45) 0.0016869(41) 0.0025969(38)
0.0199537(80) 0.0004035(15) 0.0000113(31) -0.0000492(48) -0.000525(16) -0.001514(14) -0.002511(13)

This table is taken directly from Table 1 in Ref.[6]

See also

References

Related reading

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.