Wigner D-matrix: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Added Quantum mechanics category) |
m (Placed external links at foot of page.) |
||
Line 19: | Line 19: | ||
to [[spherical harmonics]] (normalized to unity) | to [[spherical harmonics]] (normalized to unity) | ||
:<math>D^{\ell}_{m 0}(\alpha,\beta,\gamma)^* = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^m (\beta, \alpha )</math> | :<math>D^{\ell}_{m 0}(\alpha,\beta,\gamma)^* = \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^m (\beta, \alpha )</math> | ||
==References== | ==References== | ||
#Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931). | #Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931). | ||
Line 26: | Line 24: | ||
#[http://dx.doi.org/10.1016/S0166-1280(97)00185-1 Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM '''419''' pp. 19-27 (1997)] | #[http://dx.doi.org/10.1016/S0166-1280(97)00185-1 Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM '''419''' pp. 19-27 (1997)] | ||
#[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | #[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | ||
==External links== | |||
*[http://en.wikipedia.org/wiki/Wigner_D-matrix Wigner D-matrix page on Wikipedia] | |||
[[Category: Mathematics]] | [[Category: Mathematics]] | ||
[[category: Quantum mechanics]] | [[category: Quantum mechanics]] |
Revision as of 19:34, 11 December 2008
The Wigner D-matrix (also known as the Wigner rotation matrix) is a square matrix, of dimension , given by (Ref. 2 Eq. 4.12)
where and are Euler angles, and where , known as Wigner's reduced d-matrix, is given by (Ref. 2 Eq. 4.11 and 4.13)
This represents a rotation of about the (inital frame) axis.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)
References
- Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931).
- M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967)
- Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM 419 pp. 19-27 (1997)
- Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics 124 144115 (2006)