Canonical ensemble: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
mNo edit summary |
||
Line 11: | Line 11: | ||
''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math> | ''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math> | ||
<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math> | :<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math> | ||
where: | where: | ||
Line 27: | Line 27: | ||
The [[Helmholtz energy function]] is related to the canonical partition function via: | The [[Helmholtz energy function]] is related to the canonical partition function via: | ||
<math> A\left(N,V,T \right) = - k_B T \log Q_{NVT} </math> | :<math> A\left(N,V,T \right) = - k_B T \log Q_{NVT} </math> |
Revision as of 18:18, 26 February 2007
Variables:
- Number of Particles,
- Volume,
- Temperature,
Partition Function
Classical Partition Function (one-component system) in a three-dimensional space:
where:
- is the de Broglie wavelength (depends on the temperature)
- , with being the Boltzmann constant
- is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- represent the 3N position coordinates of the particles (reduced with the system size): i.e.
Free energy and Partition Function
The Helmholtz energy function is related to the canonical partition function via: