Legendre polynomials: Difference between revisions
Jump to navigation
Jump to search
m (Rodrigues) |
m (orthogonality definitions) |
||
| Line 8: | Line 8: | ||
:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | :<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | ||
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.: | |||
:<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math> for <math> m \ne n </math> | |||
The first seven Legendre polynomials are: | The first seven Legendre polynomials are: | ||
Revision as of 17:52, 20 June 2008
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral
Legendre polynomials can also be defined using Rodrigues formula as:
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
- for
The first seven Legendre polynomials are:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{4}(x)={\frac {1}{8}}(35x^{4}-30x^{2}+3)}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{5}(x)={\frac {1}{8}}(63x^{5}-70x^{3}+15x)}
"shifted" Legendre polynomials (which obey the orthogonality relationship):
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\overline {P}}_{0}(x)=1}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\overline {P}}_{3}(x)=20x^{3}-30x^{2}+12x-1}
Powers in terms of Legendre polynomials:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x\right.=P_{1}(x)}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{2}={\frac {1}{3}}[P_{0}(x)+2P_{2}(x)]}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x^{5}={\frac {1}{63}}[27P_{1}(x)+28P_{3}(x)+8P_{5}(x)]}