Legendre polynomials: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(link to assoc. Legendre)
(Moved first assoc.'s to their new page)
Line 59: Line 59:
:<math>x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]</math>  
:<math>x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]</math>  


Associated  Legendre polynomials.
:<math>P_0^0 (x) =1</math>
:<math>P_1^0 (x) =x</math>
:<math>P_1^1 (x) =-(1-x^2)^{1/2}</math>
:<math>P_2^0 (x) =\frac{1}{2}(3x^2-1)</math>
:<math>P_2^1 (x) =-3x(1-x^2)^{1/2}</math>
:<math>P_2^2 (x) =3(1-x^2)</math>
''etc''.
==See also==
==See also==
*[[Associated Legendre function]]
*[[Associated Legendre function]]
*[http://mathworld.wolfram.com/LegendrePolynomial.html Legendre Polynomial -- from Wolfram MathWorld]
*[http://mathworld.wolfram.com/LegendrePolynomial.html Legendre Polynomial -- from Wolfram MathWorld]
[[category: mathematics]]
[[category: mathematics]]

Revision as of 12:00, 20 June 2008

Legendre polynomials (aka. Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral

The first seven Legendre polynomials are:





Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_4 (x) =\frac{1}{8}(35x^4 - 30x^2 +3)}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_5 (x) =\frac{1}{8}(63x^5 - 70x^3 + 15x)}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_6 (x) =\frac{1}{16}(231x^6 -315x^4 + 105x^2 -5)}

"shifted" Legendre polynomials (which obey the orthogonality relationship):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_0 (x) =1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_1 (x) =2x -1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_2 (x) =6x^2 -6x +1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_3 (x) =20x^3 - 30x^2 +12x -1}

Powers in terms of Legendre polynomials:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x \right.= P_1 (x)}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2= \frac{1}{3}[P_0 (x) + 2P_2(x)]}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3= \frac{1}{5}[3P_1 (x) + 2P_3(x)]}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4= \frac{1}{35}[7P_0 (x) + 20P_2(x)+ 8P_4(x)]}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^5= \frac{1}{63}[27P_1 (x) + 28P_3(x)+ 8P_5(x)]}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]}

See also