Wigner D-matrix: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→References: Added a reference) |
Carl McBride (talk | contribs) m (Corrected typo.) |
||
Line 14: | Line 14: | ||
&&\times \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s}\left(\sin\frac{\beta}{2}\right)^{m'-m+2s} | &&\times \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s}\left(\sin\frac{\beta}{2}\right)^{m'-m+2s} | ||
\end{array} </math> | \end{array} </math> | ||
This represents a rotation of <math>\ | This represents a rotation of <math>\beta</math> about the (inital frame) <math>Y</math> axis. | ||
=== Relation with spherical harmonic functions === | === Relation with spherical harmonic functions === | ||
The D-matrix elements with second index equal to zero, are proportional | The D-matrix elements with second index equal to zero, are proportional | ||
Line 22: | Line 22: | ||
*[http://en.wikipedia.org/wiki/Wigner_D-matrix Wigner D-matrix page on Wikipedia] | *[http://en.wikipedia.org/wiki/Wigner_D-matrix Wigner D-matrix page on Wikipedia] | ||
==References== | ==References== | ||
#Eugene Paul Wigner | #Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931). | ||
#[http://dx.doi.org/10.1016/S0166-1280(97)00185-1 Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM '''419''' pp. 19-27 (1997)] | #[http://dx.doi.org/10.1016/S0166-1280(97)00185-1 Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM '''419''' pp. 19-27 (1997)] | ||
#[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | #[http://dx.doi.org/10.1063/1.2194548 Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics '''124''' 144115 (2006)] | ||
[[Category: Mathematics]] | [[Category: Mathematics]] |
Revision as of 16:21, 17 June 2008
The Wigner D-matrix (also known as the Wigner rotation matrix) is a square matrix, of dimension , given by
where and are Euler angles, and where , known as Wigner's reduced d-matrix, is given by
This represents a rotation of about the (inital frame) axis.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional to spherical harmonics (normalized to unity)
External links
References
- Eugene Paul Wigner "Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren", Vieweg Verlag, Braunschweig (1931).
- Miguel A. Blanco, M. Flórez and M. Bermejo "Evaluation of the rotation matrices in the basis of real spherical harmonics", Journal of Molecular Structure: THEOCHEM 419 pp. 19-27 (1997)
- Holger Dachsel "Fast and accurate determination of the Wigner rotation matrices in the fast multipole method", Journal of Chemical Physics 124 144115 (2006)