Second law of thermodynamics: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎See also: Added internal link to entropy.)
m (Added a classic reference)
Line 19: Line 19:
*[[Entropy]]
*[[Entropy]]
*[[H-theorem]]
*[[H-theorem]]
==References==
==References==
# "Reflexions sur la Puissance Motrice de Feu et sur les Machines Propres a Développer cette Puissance" (1824)
[[Category: Classical thermodynamics]]
[[Category: Classical thermodynamics]]

Revision as of 15:29, 10 April 2008

For a reversible change

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.dQ\right.=TdS}

Thus for a closed system (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} fixed):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.dU\right.=TdS -PdV}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} is the internal energy. For an open system:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.dU\right.=TdS -PdV + \mu dN}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} is the chemical potential.

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U(S,V)} one has the following total differential

See also

References

  1. "Reflexions sur la Puissance Motrice de Feu et sur les Machines Propres a Développer cette Puissance" (1824)