Virial equation of state: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
|||
Line 1: | Line 1: | ||
The virial equation of state is used to describe the behavior of diluted gases. | The '''virial equation of state''' is used to describe the behavior of diluted gases. | ||
It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the | It is usually written as an expansion of the [[compressibility factor]], <math> Z </math>, in terms of either the | ||
density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case: | density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case: | ||
Line 7: | Line 7: | ||
where | where | ||
* <math> p </math> is the pressure | * <math> p </math> is the [[pressure]] | ||
*<math> V </math> is the volume | *<math> V </math> is the volume | ||
*<math> N </math> is the number of molecules | *<math> N </math> is the number of molecules | ||
*<math>T</math> is the [[temperature]] | |||
*<math>k_B</math> is the [[Boltzmann constant]] | |||
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density | *<math> \rho \equiv \frac{N}{V} </math> is the (number) density | ||
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient | *<math> B_k\left( T \right) </math> is called the k-th virial coefficient | ||
==Virial coefficients== | ==Virial coefficients== |
Revision as of 13:56, 19 February 2008
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, , in terms of either the density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case:
- .
where
- is the pressure
- is the volume
- is the number of molecules
- is the temperature
- is the Boltzmann constant
- is the (number) density
- is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behavior
where is Avogadros number and and are volume elements of two different molecules in configuration space.
One can write the third virial coefficient as
where f is the Mayer f-function (see also: Cluster integrals). See also:
Convergence
See Ref. 3.
References
- H. Kammerlingh Onnes "", Communications from the Physical Laboratory Leiden 71 (1901)
- James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics 7 pp. 195-229 (1940)
- J. L. Lebowitz and O. Penrose "Convergence of Virial Expansions", Journal of Mathematical Physics 5 pp. 841-847 (1964)