Monte Carlo: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
*[[Cluster algorithms]] | |||
*[[Configurational bias Monte Carlo]] | |||
*[[Constant-pressure Monte Carlo]] | |||
*[[Detailed balance]] | |||
*[[Fragment regrowth Monte Carlo]] | |||
*[[Gibbs-Duhem integration]] | |||
*[[Gibbs ensemble Monte Carlo]] | |||
*[[Glauber transition probabilities]] also known as: Barkers method | |||
*[[Importance sampling]] | *[[Importance sampling]] | ||
*[[ | *[[Inverse Monte Carlo]] | ||
*[[Lattice simulations]] | |||
*[[Markov chain]] | *[[Markov chain]] | ||
*[[Monte Carlo | *[[Metropolis Monte Carlo]] | ||
*[[Monte Carlo in the grand-canonical ensemble]] | |||
*[[Monte Carlo in the microcanonical ensemble]] | |||
*[[Monte Carlo reptation moves]] | |||
*[[Quantum Monte Carlo]] | |||
*[[Random numbers]] | *[[Random numbers]] | ||
*[[ | *[[Reverse Monte Carlo]] | ||
*[[ | *[[Umbrella sampling]] | ||
*[[ | *[[Wang-Landau method]] | ||
==Historical papers== | ==Historical papers== | ||
*[http://links.jstor.org/sici?sici=0162-1459%28194909%2944%3A247%3C335%3ATMCM%3E2.0.CO%3B2-3 Nicholas Metropolis and S. Ulam "The Monte Carlo Method", Journal of the American Statistical Association '''44''' pp. 335-341 (1949)] | *[http://links.jstor.org/sici?sici=0162-1459%28194909%2944%3A247%3C335%3ATMCM%3E2.0.CO%3B2-3 Nicholas Metropolis and S. Ulam "The Monte Carlo Method", Journal of the American Statistical Association '''44''' pp. 335-341 (1949)] |
Revision as of 15:01, 18 February 2008
- Cluster algorithms
- Configurational bias Monte Carlo
- Constant-pressure Monte Carlo
- Detailed balance
- Fragment regrowth Monte Carlo
- Gibbs-Duhem integration
- Gibbs ensemble Monte Carlo
- Glauber transition probabilities also known as: Barkers method
- Importance sampling
- Inverse Monte Carlo
- Lattice simulations
- Markov chain
- Metropolis Monte Carlo
- Monte Carlo in the grand-canonical ensemble
- Monte Carlo in the microcanonical ensemble
- Monte Carlo reptation moves
- Quantum Monte Carlo
- Random numbers
- Reverse Monte Carlo
- Umbrella sampling
- Wang-Landau method