Thermodynamic integration: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary | Carl McBride (talk | contribs)  mNo edit summary | ||
| Line 4: | Line 4: | ||
| <math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math> | <math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math> | ||
| :<math>\Delta A = A - A_0 = \int_0^1 d\lambda  \langle\frac{\partial U_\lambda}{\partial \lambda}\rangle_{\lambda}</math> | :<math>\Delta A = A - A_0 = \int_0^1 d\lambda  \left\langle \frac{\partial U_\lambda}{\partial \lambda} \right\rangle_{\lambda}</math> | ||
| where | where | ||
| :<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>. | :<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>. | ||
| ==References== | |||
| [[category:classical thermodynamics]] | [[category:classical thermodynamics]] | ||
Revision as of 16:30, 29 January 2008
Thermodynamic integration is used to calculate the difference in the Helmholtz energy function between two states. The path must be continuous and reversible. One has a continuously variable energy function such that , and ,
where
- .