Flexible molecules: Difference between revisions
(New page: Modelling of internal degrees of freedom, usual techniques: == Bond distances == * Atoms linked by a chemical bond (stretching): <math> V_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} -...) |
No edit summary |
||
| Line 8: | Line 8: | ||
== Bond Angles == | == Bond Angles == | ||
Bond sequence: 1-2-3: | |||
Bond Angle: <math> \theta </math> | |||
<math> \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|} | |||
</math> | |||
Two typical forms are used to model the ''bending'' potential: | |||
<math> | |||
V_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2 | |||
</math> | |||
<math> | |||
V_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2 | |||
</math> | |||
== Internal Rotation == | |||
Revision as of 11:09, 22 February 2007
Modelling of internal degrees of freedom, usual techniques:
Bond distances
- Atoms linked by a chemical bond (stretching):
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} - b_0 )^2 }
Bond Angles
Bond sequence: 1-2-3:
Bond Angle: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|} }
Two typical forms are used to model the bending potential:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2 }