Chemical potential: Difference between revisions
Carl McBride (talk | contribs) |
Carl McBride (talk | contribs) |
||
| Line 33: | Line 33: | ||
#[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | #[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | ||
#[http://dx.doi.org/10.1063/1.1749657 John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics '''3''' pp. 300-313 (1935)] | #[http://dx.doi.org/10.1063/1.1749657 John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics '''3''' pp. 300-313 (1935)] | ||
#[http://dx.doi.org/10.1119/1.17844 G. Cook and R. H. Dickerson "Understanding the chemical potential", American Journal of Physics '''63''' pp. 737-742 (1995)] | |||
[[category:classical thermodynamics]] | [[category:classical thermodynamics]] | ||
[[category:statistical mechanics]] | [[category:statistical mechanics]] | ||
Revision as of 12:36, 28 August 2007
Classical thermodynamics
Definition:
where is the Gibbs energy function, leading to
where is the Helmholtz energy function, is the Boltzmann constant, is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume.
Statistical mechanics
The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} k_BT \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N} is the partition function for a fluid of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical particles
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N} is the configurational integral
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N}
Kirkwood charging formula
See Ref. 2
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}(r)} is the pair correlation function.
See also
References
- T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics 122 pp. 1237-1260 (2006)
- John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics 3 pp. 300-313 (1935)
- G. Cook and R. H. Dickerson "Understanding the chemical potential", American Journal of Physics 63 pp. 737-742 (1995)